

M2 Series AC Servo

User Manual

SHANGHAI AMP&MOONS' AUTOMATION CO., LTD.

Content

1 Introduction	8
1.1 About This Manual	8
1.2 Documentation Set for M2 series AC servo	8
1.3 Safety	8
1.4 Safety Symbols	8
1.5 Safety Instructions	
1.6 Standards Compliance	9
2. Product Description	
2.1 Unpacking Check	
2.2 Servo Drive Model Introduction	
2.2.1 Drive Name Plate Description	
2.2.2 Drive Model Description	
2.2.3 Drive specification	
2.2.4 Drive Dimensions (Unit: mm)	
2.2.4.1 50W 100W 200W Type	13
2.2.4.2 400W Type	13
2.2.4.3 750W Type	
2.3 Servo Motor Model Introduction	14
2.3.1 Motor Name Plate Description	14
2.3.2 Motor Model Description	
2.3.3 Motor Specification And Dimension	
2.3.3.1 □40mm Specification and Dimension	
2.3.3.2 ©60mm Specification and Dimension	
2.3.3.3 B0mm Specification and Dimension	
2.4 Servo Drive and Servo Motor Combinations	
2.5 System Configuration	
3. Installation	
3.1 Storage Conditions	
3.2 Installation Conditions	
3.3 Drive Dimensions (Unit: mm)	24
3.3.1 50W 100W 200W Type	24
3.3.2 400W Type	24
3.3.3 750W Type	
3.4 Installation Space	
3.5 Motor Installation	26
4. Connections and Wiring	27
4.1 Connecting to Peripheral Devices	27
4.1.1 System Configuration	
4.1.2 Servo Drive Connectors and Terminals	
4.1.3 Connections and Wiring Notes	28

4.1.4 Wiring Methods For Power supply P12	
4.1.4.1 Single-Phase Power Supply Connection (AC220V)2	
4.1.4.2 Three-Phase Power Supply Connection (AC220V)	
4.2 Wiring to the Connector, P2	
4.2.1 Motor Power Cable Configuration3	
4.2.2 Motor Power Cable Connector Specifications	
4.2.3 Wiring Diagram Of Motor Extend Cable	
4.3 Encoder Connector CN3	
4.3.1 Motor Encoder Feedback Cable Configuration	32
4.3.2 The Layout of CN3 Connector	33
4.3.3 Connect to Motor Encoder	
4.3.4 Specifications of Encoder Connector	34
4.3.5 Wiring Diagram of Motor Encoder Extend Cable	35
4.4 Electromagnetic Brake	36
4.4.1 Wiring Diagram	36
4.4.2 Notice for the Brake Motor	36
4.4.3 The Timing Charts Of The Electromagnetic Brake	37
4.5 Regenerative Resister	38
4.6 Recommend Cable Specifications	38
4.7 Connect to Host Computer, CN1	39
4.8 Input and Output Signal Interface Connector, CN2	
4.8.1 Input and Output Interface Specifications and Diagram	
4.8.2 Signals Description of Connector CN2	
4.8.2.1 The Layout of CN2 Connector	
4.8.2.2 Input Signals4	
4.8.2.3 Inputs Function List4	
4.8.2.4 Output Signals4	
4.8.2.5 Outputs Function List	
4.8.3 Input Signal Interface Connector, CN2	
4.8.3.1 Position pulse signal input4	
4.8.3.2 Analog Signal Input For Velocity And Torque Mode	
4.8.3.3 High Speed Input Port X1,X2,X3,X44	17
4.8.3.4 General Digital Input X5、X6、X7、X8	19
4.8.3.5 X9、X10、X11、X12 Input With Common Com Port	51
4.8.4 CN2 Output Signal Specification	53
4.8.4.1 CN2 Output Signal Diagram5	53
4.8.4.2 Y1、Y2、Y5、Y6 Output Connection Diagram	53
4.8.4.3 Y3、Y4 Connection Examples	54
4.8.5 Encoder Feedback Output	54
4.8.5.1 A/B/Z Connection Diagram5	54
4.8.5.2 Z Phase Open Collector Output5	54
4.9 STO Connector	55
4.9.1 Safety Precautions	55

4.9.2 STO Input/Output Signals	55
4.9.2.1 STO Internal Circuit Diagram	55
4.9.2.2 CN5 Connector diagram	55
4.9.2.3 STO Signal Definition	56
4.9.2.4 STO Connection Diagrams	56
5. Display and Operation	57
5.1 Description of Control Panel	57
5.2 Mode Switch Control	57
5.3 LED display description	59
5.3.1 Decimal Point And Negative Sign Description	59
5.3.2 Parameter View Setting	59
5.3.3 Parameter Save Setting	59
5.3.4 Point To Point Motion Mode	59
5.3.5 Jog Mode	
5.3.6 Control Panel Lock	
5.4 Status Monitoring Selection Mode	60
5.5 Function Mode Control	62
5.5.1 Function Mode Description	62
5.5.2 Operation Flow Chart	63
5.6 Parameter Setting Mode	64
5.6.1 Parameter Setting Description	64
5.6.2 Parameter Editing Examples	
5.7 Control Panel Lock	66
5.8 Warning And Fault Display	66
6. Preoperational mode	68
6.1 Inspection Before Trail Run	68
6.2 Trail Run Procedure	68
6.3 Motor Configuration Manually	69
6.3.1 Use Drive Control Panel To Setup	69
6.3.2 Use Software To Config Motor	
6.4 Operations of JOG Mode	
6.5 Configuration by Personal Computer	72
7. Operation Mode Selection	73
7.1 General Function Setting	73
7.1.1 Drive Servo on settings	
7.1.2 Alarm Reset	
7.1.3 CW/CCW limit	
7.1.4 Global Gain Switch Function	
7.1.5 Control Mode Switch	77
7.1.6 Drive On Fault Output	78
7.1.7 Motor Brake Control	
7.1.8 Servo Ready Output	80

7.2 Position Mode80)
7.2.1 Digital Pulse Position Mode Connection Diagram81	
7.2.2 Input Pulse Type And Input Noise Filter81	
7.2.2.1 Input Pulse Type Setting	
7.2.2.2 Input Noise Filter Setting	
7.2.2.3 Parameter P-43 (SZ) Setting83	
7.2.3 Control Pulse Dividing Switch Function	
7.2.4 Pulse Inhibition Function85	
7.2.5 Electronic Gearing Ratio85	5
7.2.6 Jerk Smoothing Filter	
7.2.7 In Position Error Output	7
7.2.8 Gain Parameters For Position Control Mode	7
7.2.9 Software Configuration For Position Mode	3
7.3 Velocity Mode	
7.3.1 Velocity Mode Connection Diagram90)
7.3.2 Parameter Settings For Analog Velocity Control Mode	
7.3.3 Basic Settings For Analog Velocity Control Mode	
7.3.3.1 Command Signal For Analog Velocity Mode	
7.3.3.2 Analog Velocity Gain	
7.3.3.3 Analog Input Voltage Offset93	
7.3.3.4 Analog Input Deadband94	
7.3.3.5 Run/Stop And Direction Signal95	
7.3.3.6 Torque Limit	
7.3.3.7 Target Velocity Reach97	
7.3.4 Analog Input Filter	
7.3.5 Software Configuration For Analog Velocity Mode	
7.4 Torque Mode	
7.4.1 Analog Torque Mode Connection Diagram101	
7.4.2 Parameters For Analog Torque Mode	
7.4.3 Basic Settings For Analog Torque Mode102	
7.4.3.1 Command Signal For Analog Torque Mode	
7.4.3.2 Analog Torque Gain103	
7.4.3.3 Analog Input Offset104	
7.4.3.4 Analog Deadband104	
7.4.3.5 Run/Stop and Direction signal105	
7.4.3.6 Velocity Limit	
7.4.3.7 Torque Reach	
7.4.4 Software Configuration For Analog Torque Mode107	
7.5 Position Table Mode Instruction	
7.5.1 Linear motion	
7.5.1.1 Linear Motion Software Configuration	
7.5.1.2 Basic Configuration	
7.5.1.3 Homing settings:	

7.5.1.4 Print	111
7.5.1.5 Position Definition	111
7.5.1.6 Simulate	112
7.5.1.7 Linear motion input definition	112
7.5.2 Rotary motion	113
7.5.2.1 Rotary motion software configuration	113
7.5.2.2 Rotary motion input definition	114
8. Parameters and Functions	115
8.1 Parameter Category	115
8.2 Parameter List	116
8.3 Parameter Description	120
9. Communication	142
9.1 RS-232 communication	142
9.1.1 What is SCL	142
9.1.2 RS-232 Connections	142
9.2 RS-485 Communication	142
9.2.1 RS-485 PIN definition	143
9.2.2 RS-485 Connection Method	143
9.3 ModBUS/RTU Communication	144
9.3.1 Data Encode	144
9.3.2 Communication Address	
9.3.3 Communication Baud Rate And Framing	
9.3.4 Power Up Mode	
9.3.5 Modbus/RTU Data Framing	
9.3.6 M2 Series AC Servo Drive Register Address And Function List:	
9.3.7 Command Opcode description	
9.3.8 Function Code	
9.3.8.1 Function Code 0X03, Reading Multiple Holding Registers	
9.3.8.2 Function Code 0x06, Writing Single Register	
9.3.8.3 Function Code 0X10, Writing Multiple Registers	
9.3.9 Modbus/RTU Applications	
9.3.9.1 Position Control 9.3.9.2 JOG mode	
9.4 CANopen Communication	
9.4.1 RJ45(8p8c)Pin Definitions	
9.4.2 CANopen NODE-ID	
9.4.2 CANopen NODE-ID 9.4.3 CANopen Communication Baud Rate	
10.Trouble Shooting	
10.1 Drive Alarm List	
11. STO function	
11.1 Operation and maintenance procedures	
11.1.1 The replacement of components	

11.1.2 Prevent hazardous event	167
11.1.3 Maintenance procedures of STO faults or failures	167
11.1.4 Commissioning and testing	167
11.2. The implementation of Safety Functional	168
11.2.1 Safety Functional Specification	168
11.2.1.1 Safety input Signal	168
11.2.1.2 External device monitor (EDM)output signal	168
11.2.2 The fault reaction function	168
11.2.3 Response time	168
11.2.3.1 Operating timing chart for safety status	168
11.2.3.2 Return timing from safety state:	169
11.2.4 Safety function activated or prohibit	
11.2.5 STO function as the highest priority	
11.3 The safety integrity information	169
11.4 The environmental and operating conditions for safety function	169
11.4.1 The environmental and operating conditions	
11.5. Safety function constraints	170
11.5.1 Failure rate	
11.5.2 Mission time and proof test	170
11.5.3 Testing, calibration or maintenance requirements	170
11.5.4 Avoiding the systematic failure	170
11.5.5 SIL capability	
11.5.6 Identify the hardware and software configuration	
11.6 The installation and commissioning guidance	
11.6.1 Installation	
11.6.1.1 Example of connection to safety switch	171
11.6.1.1 Example of connection to safety switch	171 171
11.6.1.1 Example of connection to safety switch 11.6.1.2 Example of connection to safety Light Curtain 11.6.2 commissioning	171 171 172
11.6.1.1 Example of connection to safety switch 11.6.1.2 Example of connection to safety Light Curtain 11.6.2 commissioning 11.7. The requirements for configuration test of safety functions,	
 11.6.1.1 Example of connection to safety switch 11.6.1.2 Example of connection to safety Light Curtain 11.6.2 commissioning 11.7. The requirements for configuration test of safety functions, 11.7.1 General and normal running condition 	
 11.6.1.1 Example of connection to safety switch 11.6.1.2 Example of connection to safety Light Curtain 11.6.2 commissioning 11.7. The requirements for configuration test of safety functions, 11.7.1 General and normal running condition 11.7.2 Safety relevant parameters and their values 	
 11.6.1.1 Example of connection to safety switch	
 11.6.1.1 Example of connection to safety switch 11.6.1.2 Example of connection to safety Light Curtain 11.6.2 commissioning 11.7. The requirements for configuration test of safety functions, 11.7.1 General and normal running condition 11.7.2 Safety relevant parameters and their values 	

1 Introduction

1.1 About This Manual

This manual describes the M2 Servo Drive.

It provides the information required for installation, configuration and basic operation of the M2 series AC servo drive.

This document is intended for persons who are qualified to transport, assemble, commission, and maintain the equipment described herein.

1.2 Documentation Set for M2 series AC servo

This manual is part of a documentation set. The entire set consists of the following:

- M2 Quick Start Guide. Basic setup and operation of the drive.
- M2 User Manual. Hardware installation, configuration and operation.
- M Servo Suite Software User Manual. How to use the M Servo Suite software.

1.3 Safety

Only qualified persons may perform the installation procedures. The following explanations are for things that must be observed in order to prevent harm to people and damage to property.

The M2 utilizes hazardous voltages. Be sure the drive is properly grounded.

Before you install the M2, review the safety instructions in this manual.

Failure to follow the safety instructions may result in personal injury or equipment damage.

1.4 Safety Symbols

Safety symbols indicate a potential for personal injury or equipment damage if the recommended precautions and safe operating practices are not followed.

The following safety-alert symbols are used on the drive and in the documentation:

Cautio

Caution, Hot surface

1.5 Safety Instructions

Installation

	DO NOT subject the product to water, corrosive or flammable gases, and combustibles.				
	DO NOT use the motor in a place subject to excessive vibration or shock.				
	Never connect the motor directly to the AC power supply.				
	DO NOT use cables soaked in water or oil.				
^	DO NOT extrude or pull-off the cable, nor damage the cables as electrical shocks, damages may result				
∠!∖	DO NOT block the heat dissipating holes. Please prevent any metal filings drop into the drive when mounting.				
	DO NOT switch the power supply repeatedly.				
	DO NOT touch the rotating shaft when the motor is running.				
	DO NOT strike the motor when mounting as the motor shaft or encoder may be damaged.				
	In order to prevent accidents, the initial trial run for servo motor should be conducted under no load conditions (separate the motor from its couplings and belts).				
	Starting the operation without matching the correct parameters may result in servo drive or motor damage, or damage to the mechanical system.				
	DO NOT Touch either the drive heat sink or the motor and regenerative resister during operation as they may become hot.				
DO NOT hold the motor cable during the transportation or mounting.					

Wiring

DO NOT connect any power supplies to the U,V,W terminals.					
	Install the encoder cable in a separate conduit from the motor power cable to avoid signal noise.				
<u> </u>	Use multi-stranded twisted-pair wires or multi-core shielded-pair wires for signal, encoder cables.				
	As a charge may still remain in the drive with hazardous voltage even after power has been removed, Do not touch the terminals when the charge led is still light.				
	Please observe the specified voltage.				
	Make sure both the drive and the motor connect to a class 3 ground.				
	Please ensure grounding wires are securely connected when power up.				

1.6 Standards Compliance

The M2 Series AC servo drive has been designed according to standards:

- * Electromagnetic compatibility Standard EN 61800-3 (2004)
- * Electrical Safety: Low voltage directive Standard IEC 61800-5-1 (2007)

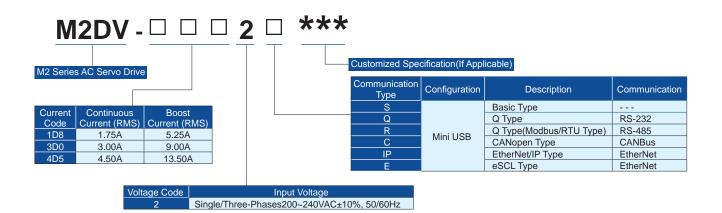
2. Product Description

2.1 Unpacking Check

Please refer to this section to confirm the model of servo drive and servo motor .

A complete and workable AC servo system should include the following parts:

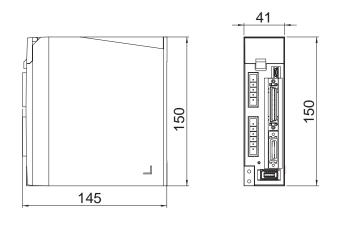
- 1. Matched Servo drive and Servo motor
- 2. A power cable connect the drive to the servo motor(Optional)
- 3. An feedback encoder cable connect the drive to the motor (Optional)
- 4. A mini USB cable connect the port CN1 to PC for communication.(Optional)
- 5. 50-PIN connector (For I/O connections, Port CN2) (Optional)
- 6. 26-PIN connector(For encoder feedback, Port CN3) (Optional)
- 7. 6-PIN connector(IEEE1394, Port CN4, Port CN5)(Optional)
- 8. RJ-45 connectors (For RS-485 or CANopen communication, Port CN6 and CN7)(Optional)
- 9. 5-PIN connector (For L1,L2,L3,L1C,L2C)
- 10. 6-PIN connector(For U,V,W,B1+,B2,B3)


2.2 Servo Drive Model Introduction

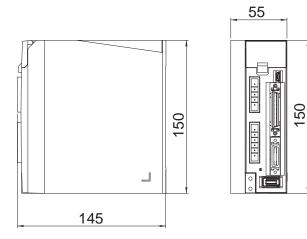
2.2.1 Drive Name Plate Description

		MOONS' moving in better ways		E RoHS
Model No. ————	M2 ACSERVO DRIVE Model No. XXXX	K-XXXXX INPUT	OUTPUT	Serial No. 09450001
Input/Output Voltage Phase Rated Current Frequency Rated Power	VOLT. 2 PHASE F.L.C FREQ. POWER	200-240VAC 1 \ 0/3 \ 0 2.6 A/1.5A 50/60Hz	0-240VAC 3 ¢ 1.8 A 0-400Hz 200W	■ 30 . *

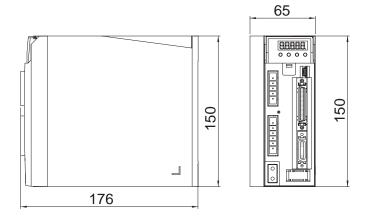
2.2.2 Drive Model Description


2.2.3 Drive specification

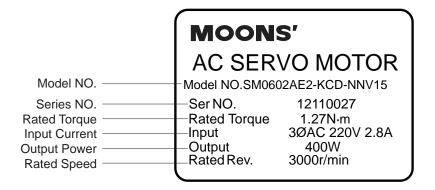
	Input Power	200W	Main Circuit	Single/3-phase, 200 - 240V ±10%, 50/60Hz		
			Control Circuit	Single phase, 200 - 240V ±10%, 50/60Hz		
		400W	Main Circuit	Single/3-phase, 200 - 240V ±10%, 50/60Hz		
			Control Circuit	Single phase, 200 - 240V ±10%, 50/60Hz		
		750W	Main Circuit	Single/3-phase, 200 - 240V ±10%, 50/60Hz		
			Control Circuit	Single phase, 200 - 240V ±10%, 50/60Hz		
	Withstand voltage			Primary to earth: withstand 1500 VAC, 1 min, (sensed current: 20 mA) [220V Input]		
		Temperature		Ambient temperature:0°C to 50°C(If the ambient temperature of servo drive is greater than 45°C, please install the drive in a well-ventilated location) Storage temperature: -20°C to 65°C		
	Environment	ironment Humidity		Both operating and storage : 10 to 93%RH or less		
		Altitude		Lower than 1000m		
		Vibration		1g		
	Control met	hod		IGBT PWM Sinusoidal wave drive		
	Encoder fee	edback		2500 line incremental encoder 15-wire or 9-wire		
Basic Specification		Control Signal	Input	8 Configurable Optically isolate digital general inputs, 5-24VDC, max input current 20mA 4 Configurable Optically isolate digital high speed inputs, 5-24VDC, max input current 20mA		
Specif		Control Signal	Output	5 Configurable optically isolated digital outputs, 30VDC, max output current 30mA One motor brake control output, 30VDC 100mA max		
icati	I/O	Analog signal	Input	2 inputs (12Bit A/D:2 input)		
on		Pulse signal	Input	2 inputs (Photo-coupler input, Line receiver input) Photocoupler input is compatible with both line driver I/F and open collector I/F. Line receiver input is compatible with line driver I/F.		
			Output	4 outputs (Line driver: 3 outputs, open collector: 1 outputs)		
		USB Mini		Connection with PC or 1:1 communication to a host.		
	Communication	nication RS232		RS-232 Communication		
		RS485		RS-485 Communication		
		CAN bus		CANopen Communication		
		Ethernet		EtherNET/IP, eSCL		
	Front panel			1. 4 keys (MODE, UP, DOWN, SET) 2. LED (5-digit)		
	Regeneratio	on Resistor		Built-in regenerative resistor (external resistor is also enabled.)		
	Control mode			 Position mode Analog Velocity mode Analog Position mode Position mode Velocity Change mode Command Torque mode Command Velocity mode 		
	Control input			 Servo-ON input Alarm clear input CW/CCW Limit Pulse& Direction or CW/CCW input Gain Switch Control mode Switch Pulse Inhibition General Input 		
	Control output			 (1) Alarm output (2) Servo-Ready output (3) External brake release (4) Speed arrival output (5) Torque arrival output (6) Tach Out (7) General Output (8) Position arrival output 		



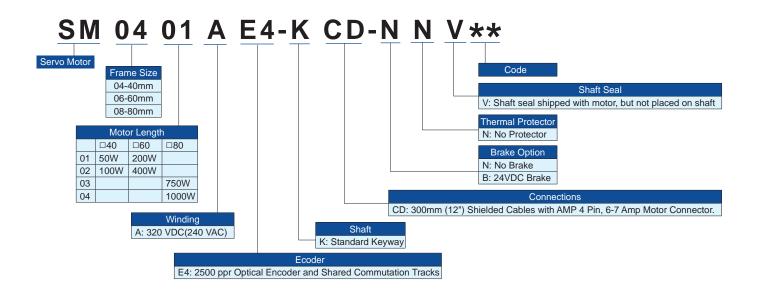
2.2.4 Drive Dimensions (Unit: mm)


2.2.4.1 50W 100W 200W Type

2.2.4.2 400W Type



2.2.4.3 750W Type



2.3 Servo Motor Model Introduction

2.3.1 Motor Name Plate Description

2.3.2 Motor Model Description

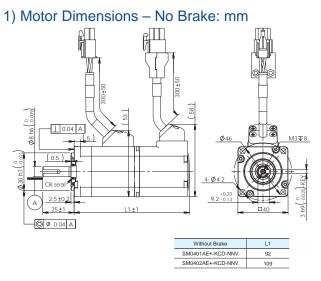
2.3.3 Motor Specification And Dimension

2.3.3.1 □40mm Specification and Dimension

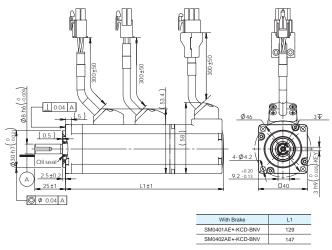
□ 40mm Series

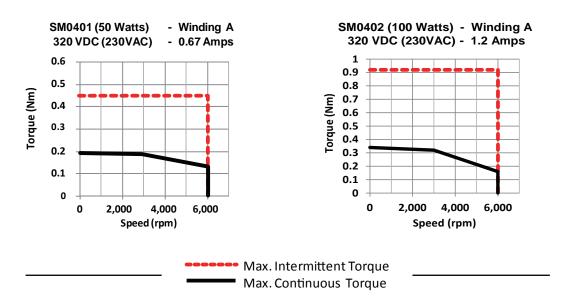
SU CE Compliant

UL File	E465363			
Insulation Class	Class B(130℃)			
IP rating	IP65 (except shaft through hole and cable end connetor)			
Installation location	Indoors, free from direct sunlight, corrosive gas, inflammable gas			
Ambient temperature	Operating 0 to 40°C, Storage -20 to 65°C			
Ambient humidity	85%RH or lower (free from condensing)			
Altitude (maximum)	Operating 1,000m			
Vibration Resistance	49 m/s ²			
Rotor Poles	8			


□ 40mm Series

Series		SM0401 - 50 Watt	SM0402 - 100 Watt
^ Preferred Model & Winding Letter		^ A	^ A
Base Model Number (with 2500 PPR incremental encode connectors, no brake)	2500 PPR incremental encoder non-sealed plastic SM0401 SM0402		
Rated Output Power	watts	50	100
Rated Speed	rpm	3000	3000
Max. Mechanical Speed	rpm	6000	6000
Rated Torque	Nm	0.19	0.32
Continuous Stall Torque	Nm	0.2	0.34
Peak Torque	Nm	0.48	0.93
Rated Current	A (rms)	0.7	1.2
Continuous Stall Current	A (rms)	1.75	1.27
Peak Current A (rms)		1.7	3.6
Voltage Constant ±5%	V (rms) / K rpm	17	16.6
Torque Constant ±5% Nm / A (rms)		0.283	0.271
Winding Resistance (Line-Line)	Ohm ±10% @25°C	27	9.7
Winding Inductance (Line-Line)	mH (typ.)	26	11.5
Inertia (with encoder)	kg m^2	0.0232 X 10 ⁻⁴	0.0428 X 10 ⁻⁴
Inertia - With Brake Option	kg m^2	0.0298 X 10 ⁻⁴	0.0494 X 10 ⁻⁴
Thermal Resistance (mounted)	°C / W	2.9	2.4
Thermal Time Constant	Minutes	12	14.5
Heat Sink Size mm		120 x 120 x 5 Alumnum	120 x 120 x 5 Alumnum
Shaft Load - Axial	(max.)	50 N / 11 Lb	50 N / 11 Lb
Shaft Load - Radial (End of Shaft)	(max.)	50 N / 11 Lb	60 N / 13.5 Lb
Weight (with std. encoder)		0.4 kg / 0.9 Lb	0.55 kg / 1.2 Lb
Weight - With Brake Option		0.65 kg / 1.4 lb	0.8 kg / 1.8 lb


Shaft Load: (L $_{10}$ life, 20,000 hours, 2,000 RPM)


□ 40mm Dimension

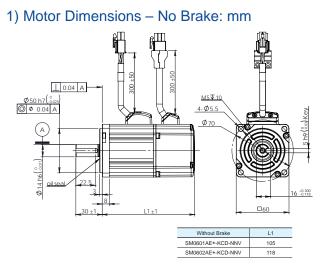
2) Motor Dimensions - Brake: mm

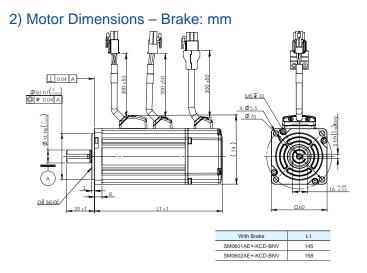
□ 40mm Torque curve

2.3.3.2 D60mm Specification and Dimension

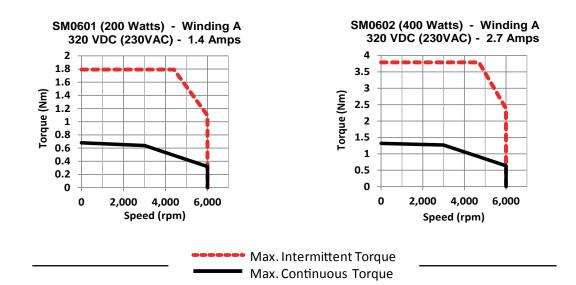
□ 60mm Series

UL File	E465363
Insulation Class	Class B(130℃)
IP rating	IP65(except shaft through hole and cable end connetor)
Installation location	Indoors, free from direct sunlight, corrosive gas, inflammable gas
Ambient temperature	Operating 0 to 40°C, Storage -20 to 65°C
Ambient humidity	85%RH or lower (free from condensing)
Altitude (maximum)	Operating 1,000m
Vibration Resistance	49 m/s ²
Rotor Poles	8


□ 60mm Series


Series		SM0601 - 200 Watt	SM0602 - 400 Watt
^ Preferred Model & Winding Letter		^ A	^ A
Base Model Number (with 2500 PPR incremental encode connectors, no brake)	r non-sealed plastic	SM0601 AE2-KCD-NNV	SM0602 AE2-KCD-NNV
Rated Output Power	watts	200	400
Rated Speed	rpm	3000	3000
Max. Mechanical Speed	rpm	6000	6000
Rated Torque	Nm	0.64	1.27
Continuous Stall Torque	Nm	0.68	1.27
Peak Torque	Nm	1.9	3.8
Rated Current	A (rms)	1.5	2.7
Continuous Stall Current	A (rms)	1.5	2.7
Peak Current	A (rms)	4.5	8.1
Voltage Constant ±5%	V (rms) / K rpm	27.2	29
Torque Constant ±5%	Nm / A (rms)	0.432	0.484
Winding Resistance (Line-Line)	Ohm ±10% @25°C	8.6	3.7
Winding Inductance (Line-Line)	mH	25	12.9
Inertia (with encoder)	kg m^2	0.165 X 10 ⁻⁴	0.1272 X 10 ⁻⁴
Inertia - With Brake Option	kg m^2	0.22 X 10 ⁻⁴	0.326 X 10 ⁻⁴
Thermal Resistance (mounted)	°C / W	1.9	1.43
Thermal Time Constant	Minutes	15	21
Heat Sink Size	mm	180 x 180 x 5 Alumnum	180 x 180 x 5 Alumnum
Shaft Load - Axial	(max.)	70 N / 15 Lb	70 N / 15 Lb
Shaft Load - Radial (End of Shaft)	(max.)	200 N / 45 Lb	240 N / 54 Lb
Weight (with std. encoder)		1.1 kg / 2.3 lb	1.4 kg / 3.1 lb
Weight - With Brake Option		1.6 kg / 3.5 lb	1.9 kg / 4.2 lb

Shaft Load: (L₁₀ life, 20,000 hours, 2,000 RPM)



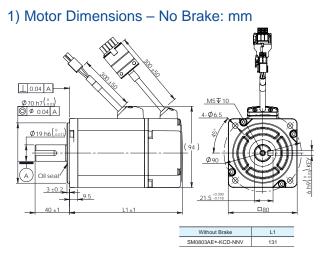
□ 60mm Dimension

□ 60mm Torque curve

2.3.3.3 B0mm Specification and Dimension

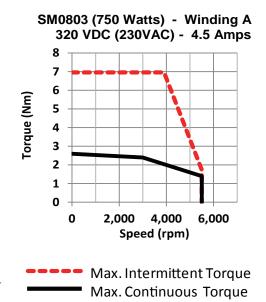
□ 80mm Series

UL File	E465363	
Insulation Class	Class B(130℃)	
IP rating	IP65(except shaft through hole and cable end connetor)	
Installation location	Indoors, free from direct sunlight, corrosive gas, inflammable gas	
Ambient temperature	Operating 0 to 40°C, Storage -20 to 65°C	
Ambient humidity	85%RH or lower (free from condensing)	
Altitude (maximum)	Operating 1,000m	
Vibration Resistance	49 m/s ²	
Rotor Poles	8	


□ 80mm Series

Series		SM0803 - 750 Watt
^ Preferred Model & Winding Letter		^ A
Base Model Number (with 2500 PPR incremental encode connectors, no brake)	r non-sealed plastic	SM0803 AE2-KCD-NNV
Rated Output Power	watts	750
Rated Speed	rpm	3000
Max. Mechanical Speed	rpm	5500
Rated Torque	Nm	2.4
Continuous Stall Torque	Nm	2.6
Peak Torque	Nm	6.9
Rated Current	A (rms)	4.5
Continuous Stall Current	A (rms)	4.9
Peak Current	A (rms)	13.5
Voltage Constant ±5%	V (rms) / K rpm	36.6
Torque Constant ±5%	Nm / A (rms)	0.543
Winding Resistance (Line-Line)	Ohm ±10% @25°C	1.47
Winding Inductance (Line-Line)	mH	8.2
Inertia (with encoder)	kg m^2	0.89 X 10 ⁻⁴
Inertia - With Brake Option	kg m^2	0.97 X 10 ⁻⁴
Thermal Resistance (mounted)	°C / W	1.04
Thermal Time Constant	Minutes	22
Heat Sink Size	mm	240 x 240 x 6 Alumnum
Shaft Load - Axial	(max.)	90 N / 20 Lb
Shaft Load - Radial (End of Shaft)	(max.)	270 N / 60 Lb
Weight (with std. encoder)		2.6 kg / 5.8 lb
Weight - With Brake Option		3.4 kg / 7.6 lb

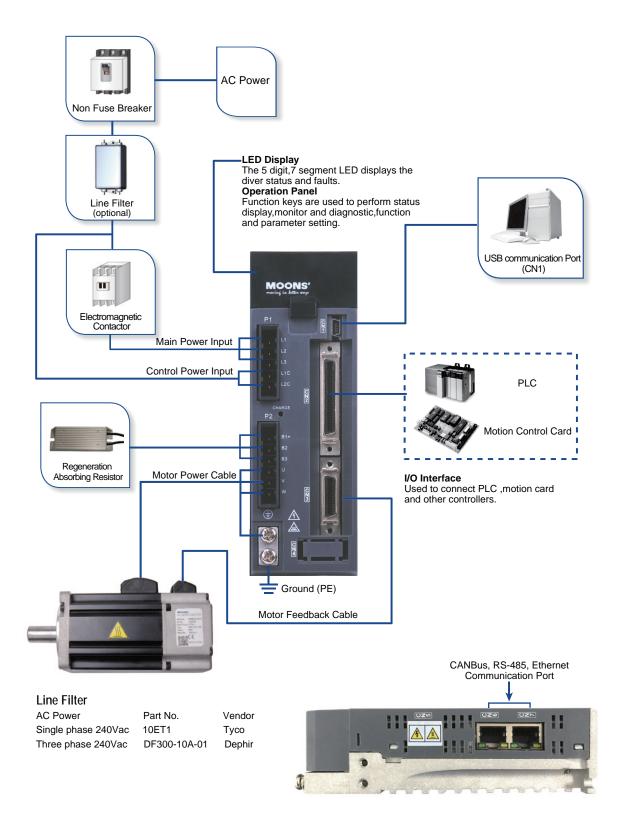
Shaft Load: (L₁₀ life, 20,000 hours, 2,000 RPM)



B0mm Dimension

2) Motor Dimensions - Brake: mm 1 0.04 A M5₹ Ø70 h7(.....) ØØ 0.04 A 4-Ø6. Ø 19 h6(.0.013) Ð Ø90 Dil sei 3 ±0.2 21.5 9.5 40 ±1 With Brake SM0803AE*-KCD-BNV 178

B0mm Torque Curve



2.4 Servo Drive and Servo Motor Combinations

				50W	100W	200W	400W	750W	
Specificatioon			Motor Model Numbers						
		2500ppr Increment Encoder	Without Brake	SM0401AE4-KCD- NNV09	SM0402AE4-KCD- NNV09	SM0601AE4-KCD- NNV09	SM0602AE4-KCD- NNV09	SM0803AE4-KCD- NNV09	
		(9PIN AMP connector)	With Brake	SM0401AE4-KCD- BNV09	SM0402AE4-KCD- BNV09	SM0601AE4-KCD- BNV09	SM0602AE4-KCD- BNV09	SM0803AE4-KCD- BNV09	
		Rated Speed	(RPM)			3000			
		Maximum Speed	(RPM)			6000			
		Rated Torque	(N•m)	0.19	0.32	0.64	1.27	2.4	
AC	Servo Motor	Maximum Torque	(N•m)	0.48	0.93	1.9	3.8	6.9	
		Rated Current	(A)	0.7	1.2	1.5	2.75	4.5	
		Maximum Current	(A)	1.75	3.6	4.5	8.3	13.5	
	Rotor Inertia		Kg•m²	0.0232×10 ⁻⁴ *0.0298×10 ⁻⁴	0.0428×10 ⁻⁴ *0.0494×10 ⁻⁴	0.165×10 ⁻⁴ *0.22×10 ⁻⁴	0.272×10 ⁻⁴ *0.326×10 ⁻⁴	0.89×10 ⁻⁴ *0.97×10 ⁻⁴	
				(*With Brake)	(*With Brake)	(*With Brake)	(*With Brake)	(*With Brake)	
		Insulation Class				Class B			
		Protection Class			IP65(except sha	ft through hole and cab	le end connetor)		
		Oil Seal				With Oil seal			
						Drive Model Numbers	6		
	Pulse&Direction	USB Mini	Basic Type	M2DV-1D82S	M2DV-1D82S	M2DV-1D82S	M2DV-3D02S	M2DV-4D52S	
	Туре	USB MIN	Q Type	M2DV-1D82Q	M2DV-1D82Q	M2DV-1D82Q	M2DV-3D02Q	M2DV-4D52Q	
AC				SCL					
Servo Drive		RS-485	Modbus RTU	M2DV-1D82R	M2DV-1D82R	M2DV-1D82R	M2DV-3D02R	M2DV-4D52R	
	Fieldbus Type	CAN	CANopen	M2DV-1D82C	M2DV-1D82C	M2DV-1D82C	M2DV-3D02C	M2DV-4D52C	
		Ethorpot	Ethernet/IP	M2DV-1D82IP	M2DV-1D82IP	M2DV-1D82IP	M2DV-3D02IP	M2DV-4D52IP	
		Ethernet	eSCL	M2DV-1D82E	M2DV-1D82E	M2DV-1D82E	M2DV-3D02E	M2DV-4D52E	

2.5 System Configuration

3. Installation

3.1 Storage Conditions

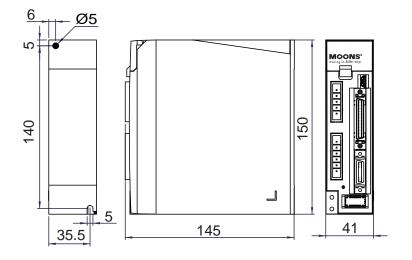
Some Storage suggestions are followed:

- · Correctly packaged and store in a clean and dry ,avoid direct sunlight
- Store within an ambient temperature range of -20 $^\circ\!\mathrm{C}$ to +65 $^\circ\!\mathrm{C}$
- Store within a relative humidity rang of 10% to 85% and non-condensing
- DO NOT store in a place subjected to corrosive gasses

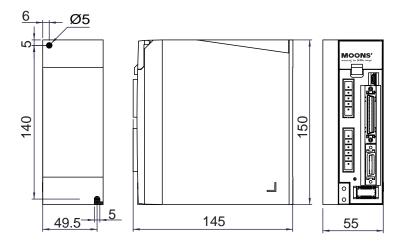
3.2 Installation Conditions

The operation ambient conditions are followed:

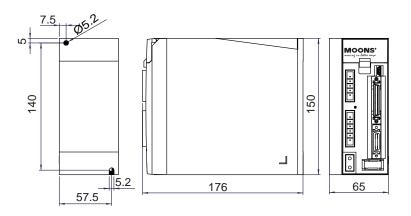
Temperature range of 0[°]C to 50[°]C. If the ambient temperature of servo drive is greater than 45[°]C, please install the drive in a well-ventilated location.


The ambient temperature of servo dive for long-term reliability should be under $45\,^\circ \! \mathbb{C}$.

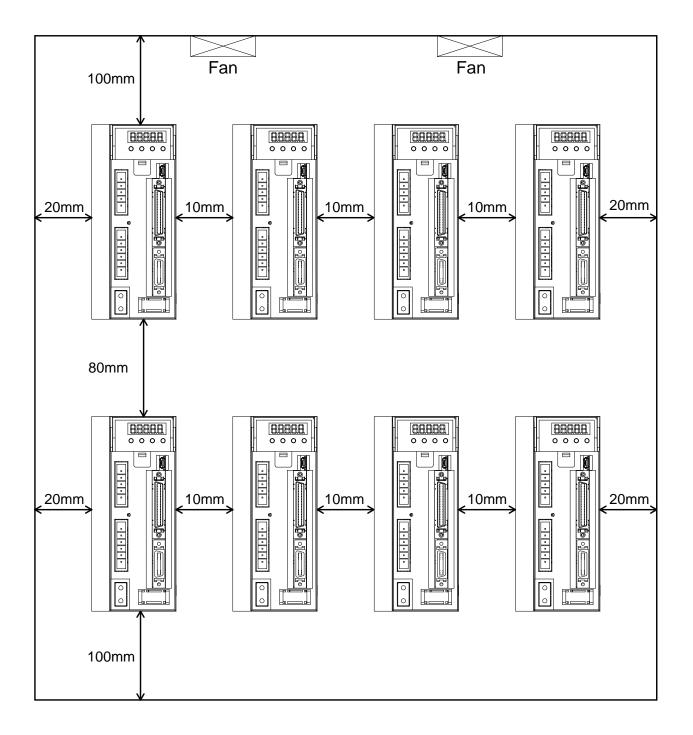
- The servo drive and motor will generate heat. If they are installed in a control panel, please ensure sufficient space around the units for heat dissipation.
- Operation within a relative humidity rang of 10% to 93% and non-condensing
- The vibration 1g
- DO NOT mount the servo drive and motor in a location subjected to corrosive gasses or flammable gases, and combustibles.
- Please mount the servo drive and motor to an indoor electric control cabinet without liquid and direct sunlight
- DO NOT mount the servo drive and motor in a location subjected to airborne dust.



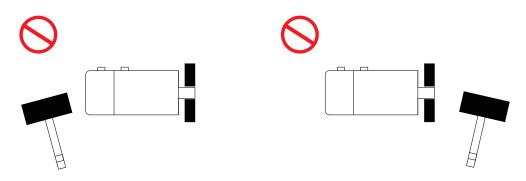
3.3 Drive Dimensions (Unit: mm)


3.3.1 50W 100W 200W Type

3.3.2 400W Type



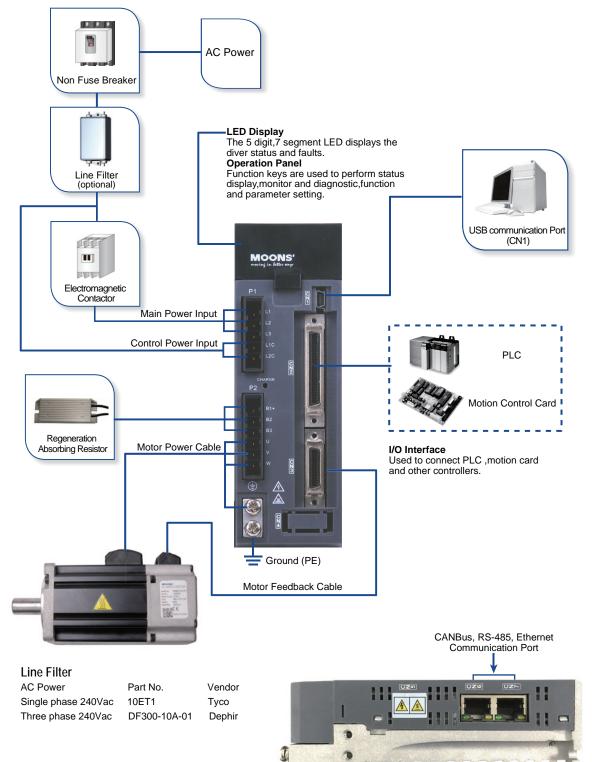
3.3.3 750W Type


3.4 Installation Space

- Incorrect installation may result in a drive malfunction or premature failure of the drive and or motor.
 Please follow the guidelines in this manual when installing the servo drive and motor.
- The M2 servo drive should be mounted perpendicular to the wall or in the control panel.
- In order to ensure the drive is well ventilated, ensure that the all ventilation holes are not obstructed and sufficient free space is given to the servo drive, and a cooling fan is mounted in the control panel.
- · Please ensure grounding wires are securely connected

3.5 Motor Installation

• DO NOT strike the motor when mounting as the motor shaft or encoder may be damaged.


- DO NOT use cables soaked in water or oil.
- Avoid a stress application to the cable outlet and connecting portion by bending.
- Please use flexible cables when using cable carrier, make sure the minimum cable bending diameter is 200mm.
- The shaft through hole and cable end connector is not IP65 design. Make sure to prevent any liquid or oil into the motor from these parts.

4. Connections and Wiring

4.1 Connecting to Peripheral Devices

4.1.1 System Configuration

4.1.2 Servo Drive Connectors and Terminals

Terminal Identification	Description		Deta	ails
D4	L1、L2、L3	Used to connect three-phase AC main circuit power		se AC main circuit power
P1	L1C、L2C	Used to co	nnect single-phase	AC for control circuit power
			Used to connect	ct servo motor
		Terminal	Wire color	Description
	U, V, W	Symbol	Wile color	Description
	0, 0, 0	U	Red	Connecting to three-phase
		V	Yellow	motor main circuit cable
P2		W	Blue	motor main circuit cable
		Internal	Ensure the circuit	t is closed between B2 and B3,
	B1+、B2、B3	Resister	and the circuit is	open between B1+ and B3.
		External	Ensure the circuit	t is open between B2 and B3,
	Regenerative resister terninals		and connect the	external regenerative resister
		Resister	between B1+ and B2.	
CN1	Communication Port	User to connect personal computer		ersonal computer
CN2	I/O Connector		Jsed to connect ex	ternal controllers.
CN3	Encoder Feedback Connector	Us	ed to connect enco	oder of servo motor.
CN4	Reserved			
CN5	Reserved			
CN6	RS-485/CANopen *RS-232 Communication Port	RJ45 connector, Daisy Chain, Used for RS-485/CANopel *RS-232 Communication Port (-Q Type Only)		
CN7	RS-485/CANopen Communication Port	RJ45 connector, Daisy Chain, Used for RS-485/CANopen Communication		

4.1.3 Connections and Wiring Notes

• Please ensure grounding wires are securely connected, wires with more than 2.0mm² on sectional area is recommended.

• Grounding method must be single point grounding.

• Ensure L1/L2/L3 and L1C/L2C are correctly wired, and voltage supplies are within the specification range.

• Ensure U/V/W is following the order of RED/YELLOW/BULE. Wrong connections will cause motor stop rotation, or wrong rotatory directions.

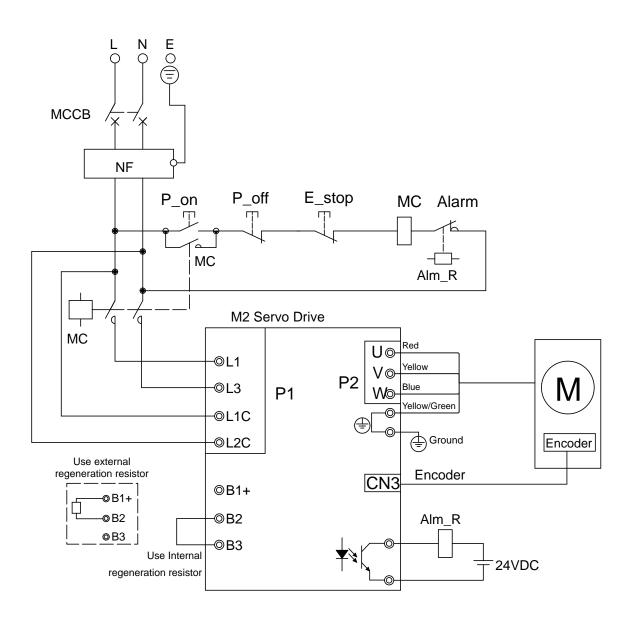
• Isolation transformer or EMI filter is recommended on drive's power supply to ensure drive's safety and improve its anti-interference level.

• Please setup an emergence stop circuitry to switch off the power supply when fault occurs.

• Please DO NOT touch drive or motor's connector terminals 5 minutes after drive and motor is powered off. There are electrical charge components in the circuitry. Therefore, even power is off, there might still be hazardous voltages within the circuitry, before its total discharge.

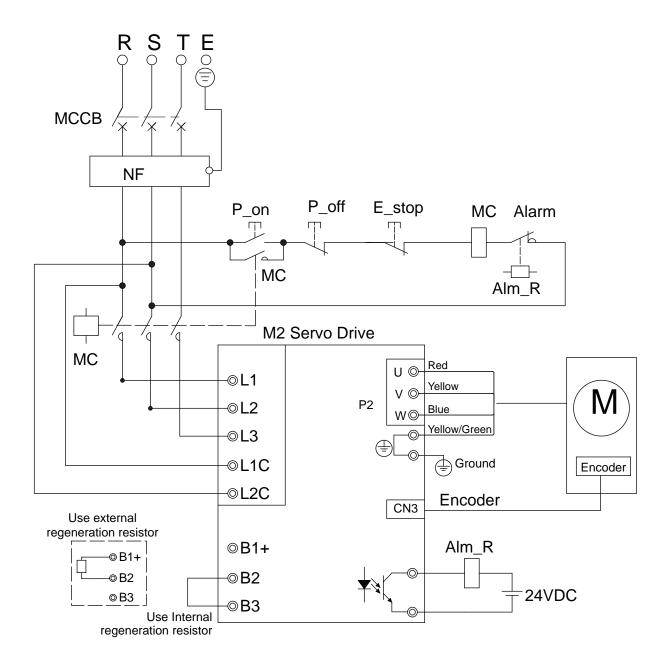
• Install the encoder cables in a separate conduit from the motor power cables to avoid signal noise. Separate the conduits by 30cm (11.8inches) above.

• Use multi-stranded twisted-pair wires or multi-core shielded-pair wires for signal, encoder feedback cables.


• The maximum length of signal input/output cable is 5 meters, and the maximum length of encoder (PG) feedback cables is 15 meters.

4.1.4 Wiring Methods For Power supply P1

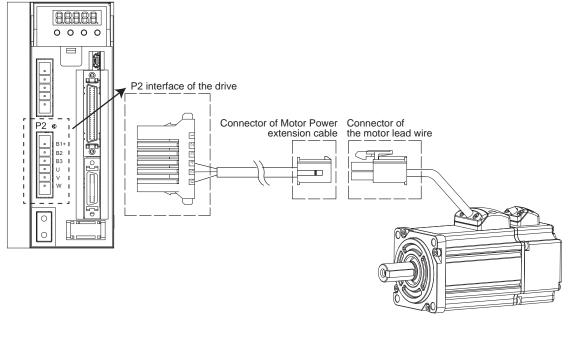
220V AC servo drive supports single phase or three phase wiring method. Three phase wiring method for 750W or above drives is recommended.


4.1.4.1 Single-Phase Power Supply Connection (AC220V)

Note:

Symbol	Description	
MCCB	Circuit Breaker	
NF	Noise Filter	
P_on	Power On Switch	
P_off	Power Off Switch	
E_stop	Emergency Stop Switch	
MC	Magnetic Contactor	
Alm_R	Alarm Relay	
Alarm	Alarm Relay Contactor	

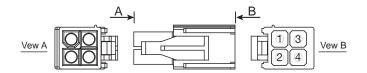
4.1.4.2 Three-Phase Power Supply Connection (AC220V)



Note:

Symbol	Description	
MCCB	Circuit Breaker	
NF	Noise Filter	
P_on	Power On Switch	
P_off	Power Off Switch	
E_stop	Emergency Stop Switch	
MC	Magnetic Contactor	
Alm_R	Alarm Relay	
Alarm	Alarm Relay Contactor	

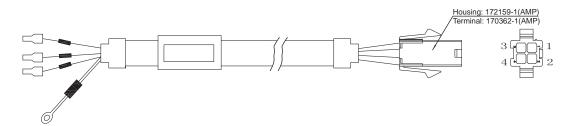
4.2 Wiring to the Connector, P2


4.2.1 Motor Power Cable Configuration

PIN	1	2	3	4
Signal	U	V	W	PE
Colour	Red	Yellow	Blue	Yellow/Green

NOTE: Please refer to section 4.2.2 Motor Power Cable Connector Specifications for details

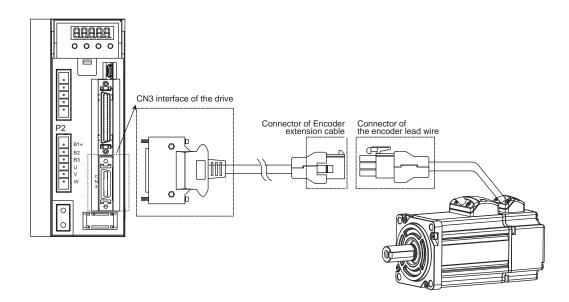
- 4.2.2 Motor Power Cable Connector Specifications
- PIN Assignment



Туре	Motor Side(Plug)	Plug-in(Housing)
Housing	AMP 172167-1	AMP 172159-1
Terminal	AMP 170360-1	AMP 170362-1

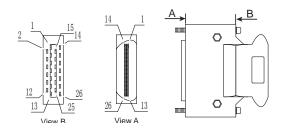
Model of Motor Connector

Drive Side(P2)	Cirnol	Colour	Motor Side(Housing)
(JST) S06B-F32SK-GGXR	Signal		AMP 172159-1
4	U	Red	1
5	V	Yellow	2
6	W	Blue	3
Grounding Screw	PE	Yellow/Green	4

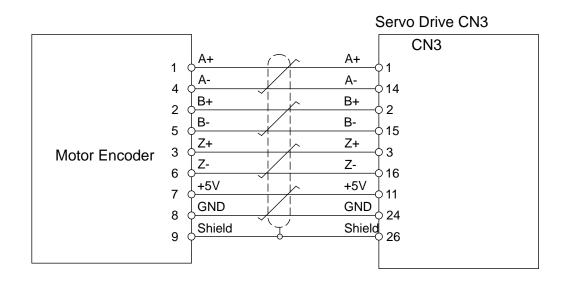

4.2.3 Wiring Diagram Of Motor Extend Cable

NOTE: Ensure U/V/W is following the order of RED/YELLOW/BULE. Wrong connections will cause motor stop rotation, or wrong rotary directions.

4.3 Encoder Connector CN3

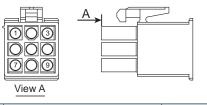

4.3.1 Motor Encoder Feedback Cable Configuration

NOTE: Please refer to section 4.1.5.2 Motor Power Cable Connector Specifications for details


4.3.2 The Layout of CN3 Connector

Pin NO.	Symbol	Description
1	A+	Encoder A+
2	B+	Encoder B+
3	Z+	Encoder Z+
4	U+	Hall U+
5	W+	Hall W+
6	U-	Hall U-
7	W-	Hall W-
11	Encoder +5V	Encoder power supply +5V
13	Encoder +5V	Encoder power supply +5V
14	A-	Encoder A-
15	B-	Encoder B-
16	Z-	Encoder Z-
17	V+	Hall V+
19	V-	Hall V-
24	GND	Encoder power supply ground
26	Shield	Shield

4.3.3 Connect to Motor Encoder


A. Connect to 2500ppr Increment Encoder (9PIN AMP connector)

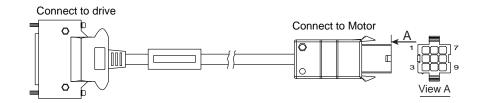
4.3.4 Specifications of Encoder Connector

A. 9 PIN AMP Connector

PIN Assignment

PIN#	Signal	Colour		
1	U+/A+	Blue		
2	V+/B+	Green		
3	W+/Z+	Yellow		
4	U-/A-	Yellow/Black		
5	V-/B-	Green/Black		
6	W-/Z-	Yellow/Black		
7	+5V	Red		
8	GND	Black		
9	Shield	Shield		

NOTE: The HALL signal U/V/W ONLY appears for 1.5 second after encoder powered on, it will then covert to A/B/Z signals.

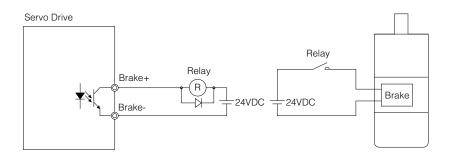

Specification of 9PIN AMP Connector

Туре	Plug of the Motor	Housing for the motor
Housing	AMP 172169-1	AMP 172161-1
Terminal	AMP 770835-1	AMP 770834-1

4.3.5 Wiring Diagram of Motor Encoder Extend Cable

A. Diagram of 9PIN Encoder Cable

Drive Side	Circael	Colour	Housing for the motor	
3M 26PIN	Signal	Colour	AMP 172161-1	
1	A+/U+	Blue	1	
2	B+/V+	Green	2	
3	Z+/W+	Yellow	3	
14	A-/U-	Yellow/Black	4	
15	B-/V-	Green/Black	5	
16	Z-/W-	Yellow/Black	6	
11	+5V	Red	7	
24	GND	Black	8	
26	Shield	Shield	9	


4.4 Electromagnetic Brake

When motor drives the vertical axis, brake should be used to hold and prevent the work (moving load) from falling by gravity while the power to servo is shut off.

NOTE: only use servo motor brake for holding the stalling status, i.e. motor is in disable or power off.

Never use this for "brake" purpose to stop the load in motion. Wrong use might cause servo motor damages.

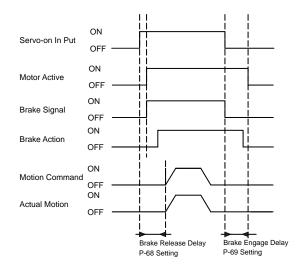
4.4.1 Wiring Diagram

4.4.2 Notice for the Brake Motor

When no power is applied to the electromagnetic brake, it is in locked position. Therefore, the motor shaft will not be able to rotate.

The brake coil has no polarity.

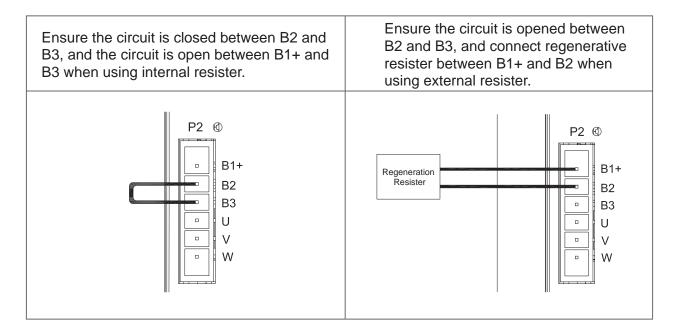
During the brake/release action, there might be "Ka-Da" sounds occurring, this does not affect the use of brake.


Specification of brakes are as follows:

	Motor Power					
Туре	50W	100W	200W	400W	750W	
Holding Torque (N•m)	0.35		2		4.5	
Working Current (A)	0.25		0.38		0.61	
Rated Voltage (V)	24V±10%					
Release Time	<25ms					
Engage Time	<25ms					
Release Voltage (V)	Release Voltage 18.5VDC					

4.4.3 The Timing Charts Of The Electromagnetic Brake

In order to prevent damage to the brake, there are delay sequences during the brake operation. Please be cautious with brake operation sequence.



Brake engage/disengage delay time can be set via M servo suite software, or on the drive directly via P function: P-68 (BD) or P-69 (BE).

Input 8	a Output					
Digital 1	Input Digital Output Analog Input					
Y1	General Purpose 🔹	Y4	General Purpose 🔹			
Y2	Closed to release brake	Y5	General Purpose 🔹			
Y3	General Purpose 🔹	Y6	General Purpose 🔹			
Brak	e Out Settings					
Wait	0 🚔 ms before moving for brake to release					
Wait	Wait 0 ms for brake to engage before disabling servo					

4.5 Regenerative Resister

In M2 series AC servo drives, there is a pre-installed 40W (M2DV-4D5 model: 60W) regeneration resistor. In some applications, the pre-installed regeneration resistor might not be enough to absorb all foldback current. In these cases, a larger wattage regeneration resistor needs to be connected externally, to prevent drive from over voltage warnings.

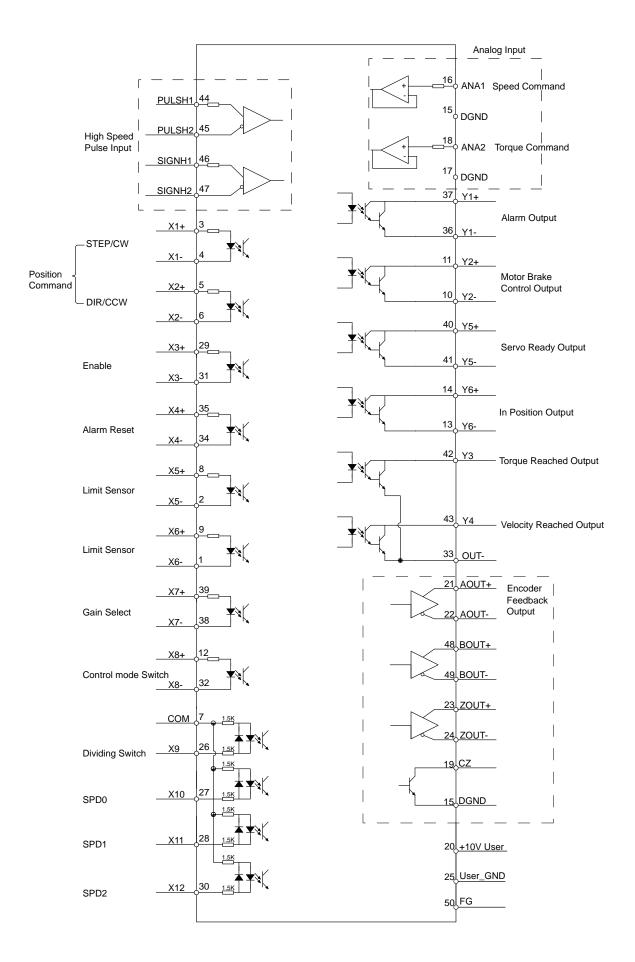
4.6 Recommend Cable Specifications

- For drive's main circuit, please use wires withstand at least 600VAC.
- Please select wires with sufficient allowance for parameters such as operating current and ambient temperature.
- Recommended wire selections are as follows:

	Servo Drive And Corespondent Motor Model		Wire Width mm ² (AWG)					
Servo Drive Al			L1C/L2C	U/V/W	B1+, B3			
	SM0401AE4-KCD-*NV	1.25 (AWG16)	1.25 (AWG16)	1.25 (AWG16)	2.0 (AWG14)			
M2DV-1D82*	SM0402AE4-KCD-*NV	1.25 (AWG16)	1.25 (AWG16)	1.25 (AWG16)	2.0 (AWG14)			
	SM0601AE4-KCD-*NV	1.25 (AWG16)	1.25 (AWG16)	1.25 (AWG16)	2.0 (AWG14)			
M2DV-3D02*	SM0602AE4-KCD-*NV	2.0 (AWG14)	2.0 (AWG14)	2.0 (AWG14)	2.0 (AWG14)			
M2DV-4D52*	SM0803AE4-KCD-*NV	3.5 (AWG12)	3.5 (AWG12)	3.5 (AWG12)	3.5 (AWG12)			

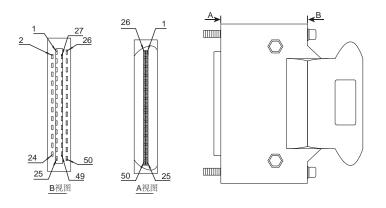
4.7 Connect to Host Computer, CN1

Port CN1 is used to connect drive with PC. Use M servo suite software to set control mode, change parameter values, and use auto-tuning function and so on.


PIN	Symbol	Function
1	+5V	+5V Power Supply
2	D-	Data -
3	D+	Data +
4	—	Reserved
5	GND	Ground

4.8 Input and Output Signal Interface Connector, CN2

4.8.1 Input and Output Interface Specifications and Diagram


Port CN2 on M2 series AC servo drives is used for input/output signals. Details are shown in table below:

	Inputs	Inputs	8 Configurable Optically isolate general Inputs, 5-24VDC, 20mA 4 Configurable Optically isolate High Speed inputs
I/O	Digital Signal	Outputs	4 Configurable Optically isolate general Outputs, max 30VDC, 20mA 1 Alarm Output, max 30VDC, 20mA. 1 motor brake control output, max 30VDC, 100mA.
Signals	Analog Signal	Inputs	2 Analog Inputs, with 12bit resolution
	1	Inputs	2 Optically isolated high speed inputs 500Hz (Open collector) 2 high speed differential inputs 2MHz
Pulse Signal		Outputs	4 high speed encoder feedback output (3 Line Driver A/B/Z, and 1 open collector output Z)

4.8.2 Signals Description of Connector CN2

4.8.2.1 The Layout of CN2 Connector

4.8.2.2 Input Signals

M2 series AC servo drive has 12 programmable digital inputs as well as 2 analog inputs.

Each of the input can be specified with different function via parameter settings. The functions are as follows:

- Specified function signals: i.e. STEP/DIR signal, motor enable/disable signals.
- General purpose signal: In velocity mode, torque mode, Q program mode, or SCL mode, it is used as general purpose signal with no specified functions.

Signal	Symbol	Pin NO.	Details			
¥1	X1+	3	This input has three functions: • Accept STEP pulse input such as STEP signals, CW pulse, A pulse in Position mode.			
×1	X1 X1- 4		Run/Stop input in torque or velocity mode.General purpose input.			
X2	X2+	5	 This input has three functions: Accept STEP pulse input such as Direction signals, CCW pulse, B pulse in position mode. 			
×2	X2-	6	 Direction input in torque or velocity mode. General purpose input. 			
Xo	X3+	29	Enable/Disable input.			
X3	Х3-	31	General purpose input.			
X/A	X4+	35	Alarm Reset Input, used to reset drive alarm.			
X4	X4-	34	General purpose input.			
VE	X5+	8	Limit Sensor Input.			
X5	X5-	2	General purpose input.			
VC	X6+	9	Limit Sensor Input.			
X6	X6-	1	General purpose input.			
X7	X7+	39	Gain Select Input in all control mode.			
λ/	X7-	38	General purpose input.			
X8	X8+	12	Switch Control mode between main mode and second mode.			
Λŏ	X8-	32	General purpose input.			
Х9	Х9	26	 Dividing Switch, change the pulses per revolution for electronic Gearing. General purpose input. 			
X10	X10	27	 Pulse Inhibited Input. Ignore the pulse input when this input is activated in position mode. Speed Selecting Input 1 in change Speed mode. General purpose input. 			
X11	X11	28	 Speed Selecting Input 2 in change Speed mode. General purpose input. 			

X12	X12	30	 Speed Selecting Input 3 in change Speed mode. General purpose input. 			
COM	COM	7	X9-X12 COM point.			
	PULSH1	44	High-speed pulse inputs (+5VDC line drive input).The max. input frequency is 2MHz.			
High-Speed	PULSH2	45	 Three different pulse command can be selected: Pulse & Direction 			
Pulse Inputs	SIGNH1	46	CW Pulse and CCW Pulse A Quadrature B pulse			
	SIGNH2	47	(NOTE: DO NOT use it with X1/X2 both.)			
Analog Input Signal 1	ANA1	16	 In velocity command mode in analog velocity mode. The offset, dead band, function of analog input 1 can be set by M Servo Suit or parameters P-51, P-55 and P-60. Sets or requests the analog Input gain that relates to motor position when the drive is in analog position command mode. Sets or requests the gain value used in analog velocity mode. General Analog Input in Q mode. 			
	DGND	15	Digital Ground for Analog input.			
Analog Input Signal 2	ANA2	18	 In torque command mode in analog torque mode. The offset, dead band, function of analog input 2 can be set by M Servo Suit or parameters P-53, P-57 and P-61. General Analog Input in Q mode 			
	DGND	17	Digital Ground for Analog input.			

4.8.2.3 Inputs Function List

	1	2	3	4	5	6	7	8	9	10	11	12
Step												
DIR												
CW Limit												
CCW Limit												
Start/Stop												
Direction												
Servo enable												
Alarm clear												
Speed selection 1,2,3												
Global gain selection												
Control mode selection												
Pulse encoder Resolution selection												
Pulse Inhabit												
General Input												

■- Position Mode ▲- Velocity Mode ▼ - Torque Mode ● - All Modes

4.8.2.4 Output Signals

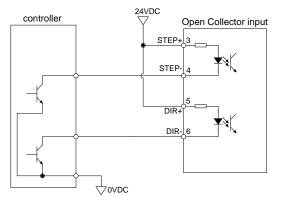
M2 series AC servo drive has 6 programmable digital output signals available; each of the output can be specified with different function via parameter settings.

Signal	Symbol	Pin NO.	Details
	Y1+	37	This output has two functions:
Y1	Y1- 36		Alarm Output. General purpose output.
	Y2+	11	This output has two functions:
Y2	Y2-	10	Motor brake control output. General purpose output.
NO.	Y3+	42	Torque Reached Output.
Y3	Y3-	33	General purpose output.
	Y4+	43	Moving signal output, output signal when dynamic position error less
Y4	Y4-	33	 than set value in position mode. Velocity reach output. Output signal when actual speed is same as the target speed and the speed ripple less than ripple range. General purpose output.
	Y5+	40	Servo ready output. Output servo ready signal when the drive is ready
Y5	Y5-	41	to be controlled and without alarm. • General purpose output.
	Y6+	14	In position signal output, output signal when in position, and the
Y6	Y6-	13	 position error less than set value in position mode. Tach out output. Tach output, produces pulses relative to the motor position with configurable resolution. General purpose output.
	AOUT+	21	The encoder feedback phase A line drive output.
	AOUT-	22	The encoder reedback phase A line drive output.
Encoder pulse	BOUT+ 48		The encoder feedback phase B line drive output.
feedback Output	BOUT-	49	
	ZOUT+	23	The encoder feedback phase Z line drive output.
	ZOUT-	24	· · ·
	ZOUT	19	The encoder feedback phase Z output. (Open collector)
+10V	+10V User	20	+10VDC user, max 100mA
Output	USER_GND	25	+10VDC user Ground

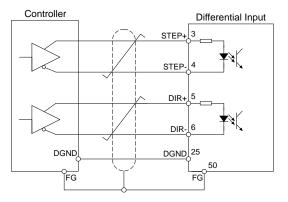
4.8.2.5 Outputs Function List

	Output Pin		Y2	Y3	Y4	Y5	Y6
	Alarm Output	•	I L	I L	l	I L	
	InPosition error						
	Dynamical Position error		г	 I		 I	
	Tach Out						•
Function	Brake		•				
	Torque Reach			•			
	Servo Ready					•	
	Velocity Reach						
	General Output	•		•	•	•	•

■- Position Mode ▲- Velocity Mode ▼ - Torque Mode ● - All Modes


4.8.3 Input Signal Interface Connector, CN2

4.8.3.1 Position pulse signal input


M2 series AC servo has two high speed pulse intputs, STEP/DIR and PULSH/SIGNH. STEP/DIR supports 5-24VDC up to 500Hz open collector input signal or differential input signal through line driver. PULSH/ SIGNH supports 5VDC up to 2MHz with differential line driver input.

NOTE: STEP/DIR and PULSH/SIGNH CANNOT be used at the same time.

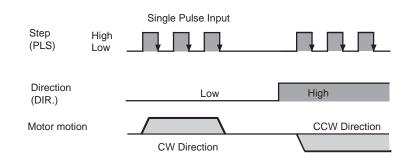
A. Open Collector Input Signal Diagram

B. Differential Input Signal Diagram

C.High Speed Differential Signal Input Diagram

Please ONLY use 5V supply for PULSH/SIGNH input, DO NOT use 24V.

D. Pulse Input Description

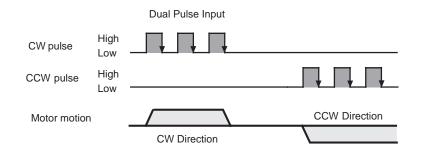

STEP/DIR Pulse Input

When both STEP and DIR input signal is ON, the motor will rotate in one direction

When STEP input signal is ON, and DIR input signal is OFF, the motor will rotate in the opposite direction.

*Direction signal (DIR) can be configured via M Servo Suite software.

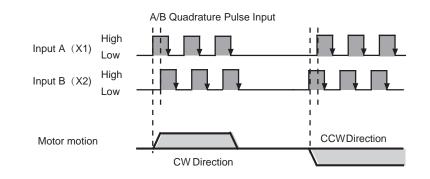
The following graph represents motor rotates in CW direction when DIR input is ON.



CW/CCW Pulse

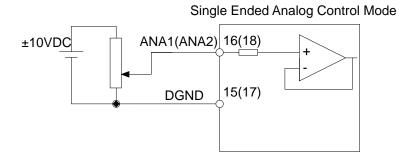
When Pulse input into X1, the motor will rotate in one direction.

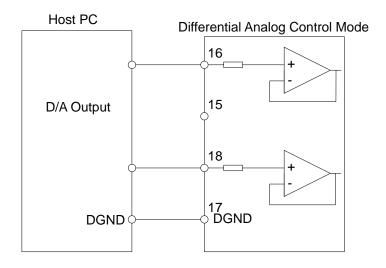
When Pulse input into X2, the motor will rotate in the opposite direction.


*Motor direction can be configured via M servo suite.

A/B Quadrature

In A/B Quadrature mode, motor rotary direction is based on the the leading signal between A and B. *Motor rotate direction can be configured via M servo suite. Direction is defined by the leading input between X1/X2.


The following graph represents motor rotates in CW direction when X1 is leading X2.

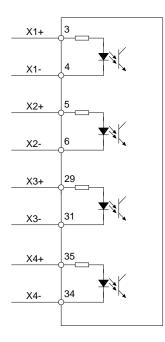

4.8.3.2 Analog Signal Input For Velocity And Torque Mode

M2 series AC servo drive has 2 single ended analog inputs and 1 differential analog input. The input voltage range is between -10V~+10V. Velocity and torque range can be configured via M servo suite software.

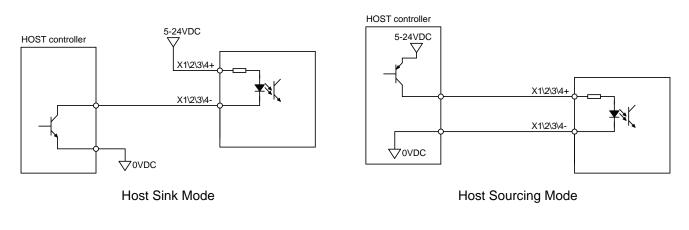
A.Single Ended Analog Input

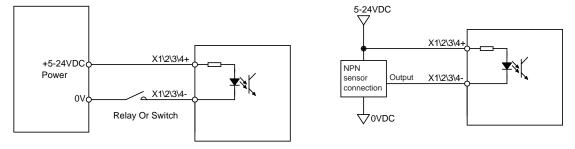
B. Differential Analog Input

4.8.3.3 High Speed Input Port X1,X2,X3,X4

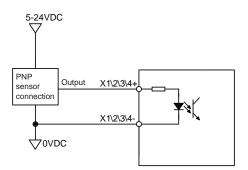

A. High Speed Input Port

M2 series AC servo drive has 4 Optically isolated high speed digital inputs X1,X2, X3,X4. These inputs allow input voltage from 5VDC~24VDC with maximum current of 20mA, and up to 500KHz. They can be used for general propose inputs, connecting sensor switch signals, PLC controllers or other types of controller output signals.


NOTE: When drive is in position mode, X1, X2 can ONLY be set as STEP/DIR signal.

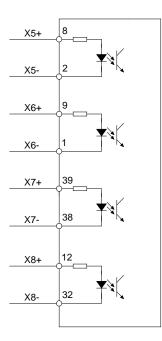

When drive is NOT in position mode, X1, X2 can be set as general purpose signals.

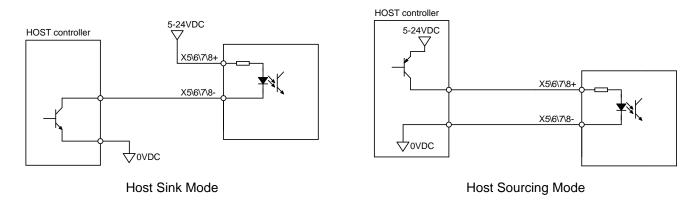
X1, X2, X3, X4 Circuit Are As Follows:

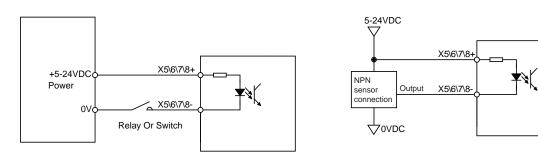

B. High Speed Input Connection Diagram

Sensor And Switch Connection

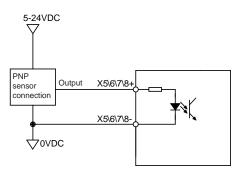
NPN Sensor Connection


NPN Sensor Connection


4.8.3.4 General Digital Input X5, X6, X7, X8


M2 series AC servo drive has 4 Optically isolated general digital inputs X5, X6, X7, X8. It allows input voltage range 5VDC-24VDC, with maximum input current of 20mA up to 5KHz. Both single ended and differential signal is allowed.

X5, X6, X7, X8 Circuit Are As Follows:

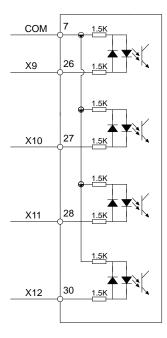

X5, X6, X7, X8 Input Port Connection Diagram

Sensor And Switch Connection

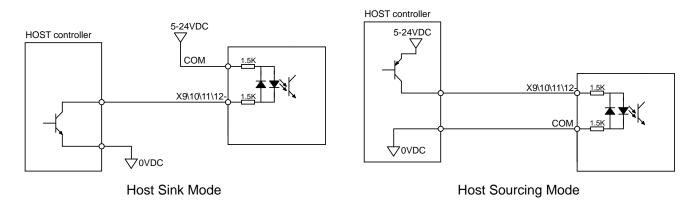
NPN Sensor Connection

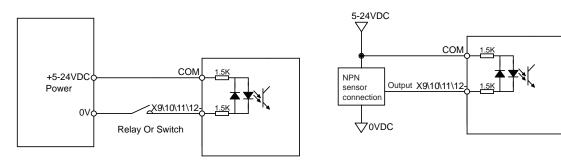
PNP Sensor Connection

4.8.3.5 X9、X10、X11、X12 Input With Common Com Port

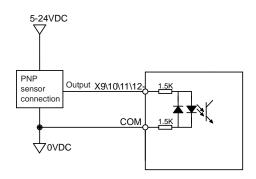

M2 series AC drive also has 4 single ended optically isolated inputs connecting with single common node 'COM'. They can be used with sourcing or sinking signals, 5-24V. This allows connection to PLCs, sensors, relays and mechanical switches. Because the input circuits are isolated, they require a source of power. If you are connecting to a PLC, you should be able to get power from the PLC power supply. If you are using relays or mechanical switches, you will need a 5-24 V power supply.

What is COM?


"Common" is an electronics term for an electrical connection to a common voltage. Sometimes "common" means the same thing as "ground", but not always. If you are using sinking (NPN) signals, then COM must connect to power supply +. If you are using sourcing (PNP) input signals, then you will want to connect COM to ground (power supply -).

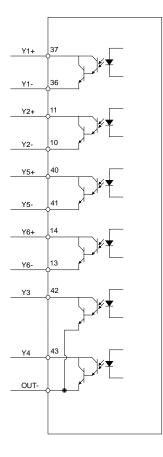

NOTE: If current is flowing into or out of an input, the logic state of that input is low or closed. If no current is flowing, or the input is not connected, the logic state is high or open.

X9、X10、X11、X12 Circuit Are As Follows:


X9、X10、X11、X12 Input Port Connection Diagram

Sensor And Switch Connection

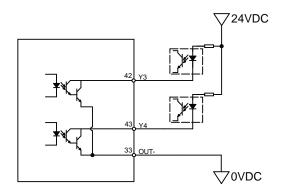
NPN Sensor Connection


PNP Sensor Connection

4.8.4 CN2 Output Signal Specification

M2 series AC servo drive features 6 optically isolated digital outputs. They can be configured via M Servo Suite. Y1, Y2, Y5, Y6 are differential output signals, they can be used for both sourcing or sinking signals. Y3, Y4 common ground outputs, they can be used for sinking signals.

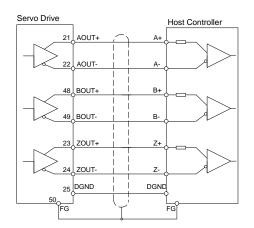
4.8.4.1 CN2 Output Signal Diagram



4.8.4.2 Y1, Y2, Y5, Y6 Output Connection Diagram

NOTE: Y1、Y3、Y4、Y5、Y6 maximum outputs are 30VDC 30mA. Y2 maximum output is 30VDC, 100mA.

4.8.4.3 Y3、Y4 Connection Examples



4.8.5 Encoder Feedback Output

M2 series AC servo drive can output encoder A/B/Z phase as differential output signals through line driver. The output signal is 5V, A/B signals are 10000 pulse/rev, Z signal is 1 pulse/rev.

The host must use line receiver to receive the signals. Please use twist pair wires for signal transfer.

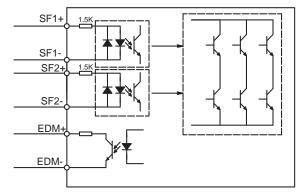
4.8.5.1 A/B/Z Connection Diagram

NOTE: Please make sure the host controller and the servo drive are connected to a common ground.

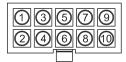
4.8.5.2 Z Phase Open Collector Output

In M2 series AC servo drive, encoder signal Z uses open collector output circuitry. Due to the narrow bandwidth of encoder signal Z, please use high speed optocoulper circuitry for the host receiver.

4.9 STO Connector


On the M2AC series servo drives, the STO (Safe Torque Off) function is connected via port CN5. The STO function shuts off the motor current turning off the motor output torque by forcibly turning off the signal of the servo driver power transistor. This is done internally through the STO Input/Output signal circuit.

4.9.1 Safety Precautions

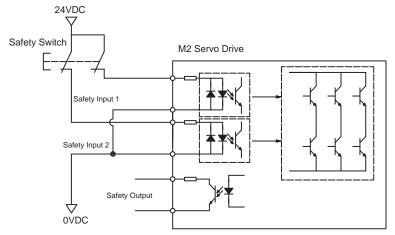

- If the STO function does not trigger, make sure the STO connector is plugged into CN5 on the drive correctly.
- When using the STO function, perform an equipment risk assessment to ensure that the system conforms to the safety requirements.
- Even when the STO function is enabled, the servo motor may move due to external force (e.g. gravitational force on the vertical axis). Make sure a holding brake is used in applications where this is possible.
- When the STO function engages and removes the torque, the motor will be "free running", requiring more distance until the motion stops. Make sure this will not be a safety issue.
- When the STO function operates, it will turn off the current to the motor, but it does not turn off the power to the servo drive. Make sure to disconnect the power to the drive before performing any maintenance on it.
- After the STO function is triggered, the drive will have a fault alarm status (Alarm code: r20Lo), and the motor will be disabled.
- After the STO signal return to normal, the drive will automatically clear the STO fault alarm, but the motor will remain disabled . To restore the system to normal operation, re-enable is needed.

4.9.2 STO Input/Output Signals

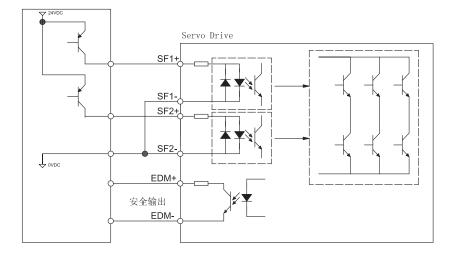
4.9.2.1 STO Internal Circuit Diagram

4.9.2.2 CN5 Connector diagram

Item	Part number	Vendor
Housing	43025-1000	Molex
Crimp	43030-0005	Molex



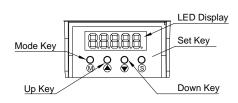
4.9.2.3 STO Signal Definition


Signal	Symbol	Pin	Description	Control Mode
	SF1+	1	When SF1 has no input signal, e.g. the port is disconnected, SF1 will be	
Safety Input SF1	SF1-	5	considered OFF. The upper half of the internal power transistor will be shut off.	
Cofety Input CE2	SF2+	3	the part is disconnected SE2 will be	Compatible with all control modes
Safety Input SF2	SF2-	2	considered OFF. The upper half of the internal power transistor will be shut off.	
Cofoty Output	EDM+	6	Output monitor signal used to check the	
Safety Output	EDM-	4	safety function.	
Ground	DGND	7, 8	+5VDC power ground	
+5V power	+5V	9, 10	+5VDC power supply	

4.9.2.4 STO Connection Diagrams

Connection to safety switch

Safety light curtain connection

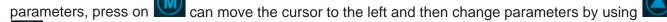


5. Display and Operation

5.1 Description of Control Panel

Symbol	Name	Details
	LED Display	The LCD display (5 digits, 7 segments) show the drive's operating condition and warning codes, parameters and settings values.
		Press and hold on mode button to switch LED display mode
		a). Monitoring selection mode
M	MODE Key	b). Function selection mode
	WODE Ney	c). Parameter setting mode
		When editing the parameters, press on MODE button can move the cursor to the left and then change parameters by using arrow keys.
	UP/DOWN Key	UP and DOWN Key. Pressing the UP and DOWN key can scroll through and change monitor codes, parameter groups and various parameter settings.
S	SET Key	Press to entering mode Press and hold to save parameters/settings

5.2 Mode Switch Control

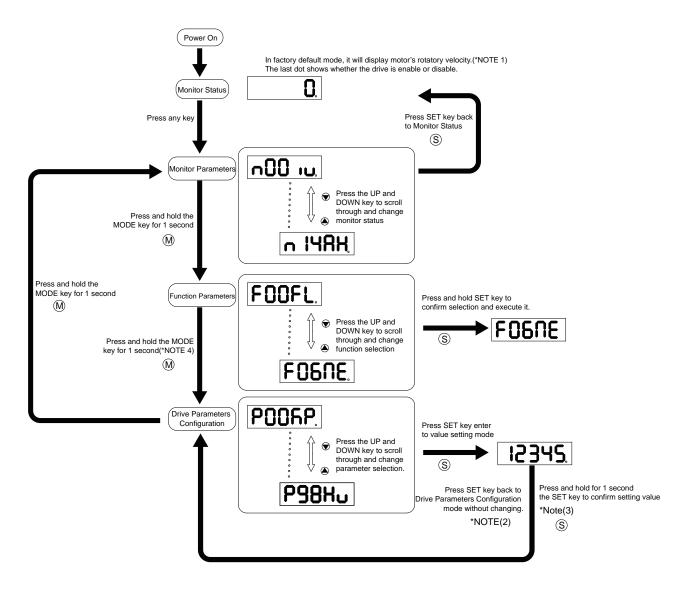

1) Press key and key can change modes among status monitoring, function control, parameters setting and etc.

2) If no warnings or faults has occur, the drive will not go into warning and fault display mode.

3) If any of the following warnings are detected by the drive, the LED display on the drive will switch into warning or fault display mode immediately. Press any key on the drive will switch back to previous display mode.

4) When no key (s) on the control panel is pressed for 20 seconds, the display will switch back to pervious status monitoring display mode.

5) In monitoring selection mode, function selection mode and parameter setting mode, when editing the


🖉 keys.

6) In status monitoring mode, press and hold key, will lock the control panel. To unlock the panel,

please press and hold the key again.

🤇 **400-820-966**1

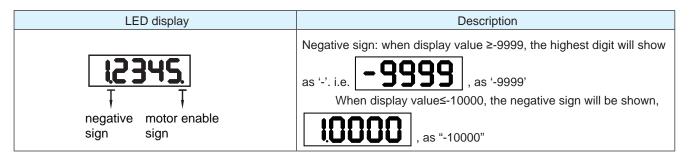
Control mode switch flowchart:

NOTE:

1) When power is applied, drive's display will show customer defined monitoring mode. In factory default mode, it will display motor's rotary velocity.

2) In parameter setting mode, press we key will quit from parameter setting mode, and return back to parameter selection mode, and changes will not be saved.

3) In parameter setting mode, press and hold will button will confirm and apply current parameter setting. This will effect immediately. However, this change will not save to drive's Flash. If


parameter is required for permanent use, please go to function mode" **FUHER**, and then

press and hold we button to save the parameter change.

4) When drive is connected to the host computer with M servo suite on, parameter setting mode CANNOT accessed directly on drive's control panel.

5.3 LED display description

5.3.1 Decimal Point And Negative Sign Description

5.3.2 Parameter View Setting

LED display	Description	
.2345.	There are only 5 digits on the LED display, when more than 5 digits are needed, it will show as following:	
	When the highest digit is flashing, it means the lower 5 digits are show. Press to show the upper 5 digits.	
.285	The graph is showing '-12802345'	

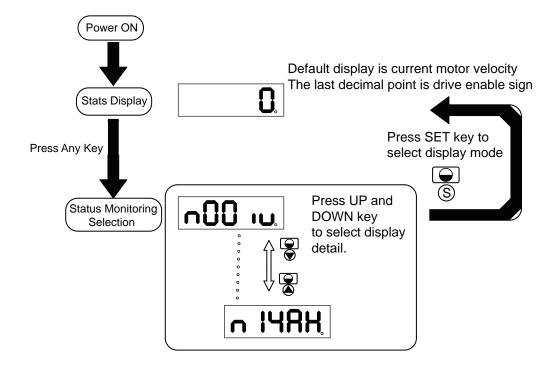
5.3.3 Parameter Save Setting

LED display	Description
58uEd	In parameter setting mode, press and hold key will save the changing parameter. 'Saved' will also be shown display on the LED.
	In parameter setting mode when motor is rotating, press and hold
δυΞΥ	, LED display will show status as busy. It means that the current parameter cannot be saved, please stop the current motor motion and save the parameter again.

5.3.4 Point To Point Motion Mode

LED display	Description
P[<u>H</u>	P-CW means motor are rotating in CW direction under point-to-point mode
P-[[8]	P-CCW means motor are rotating in CCW direction under point-to- point mode

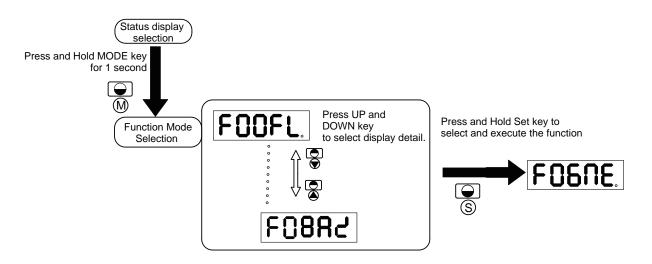
5.3.5 Jog Mode


LED display	Description	
J[H .	J—CW means motor rotating in CW direction under JOG mode	
J-228.	J—CCW means motor rotating in CCW direction under JOG mode	

5.3.6 Control Panel Lock

LED display	Description	
LER	This means the key panel is locked. Press and hold for 1 second under status monitoring mode to lock.	
սոԼ[հ	When control is locked. Press and hold for 1 second to unlock the key panel.	

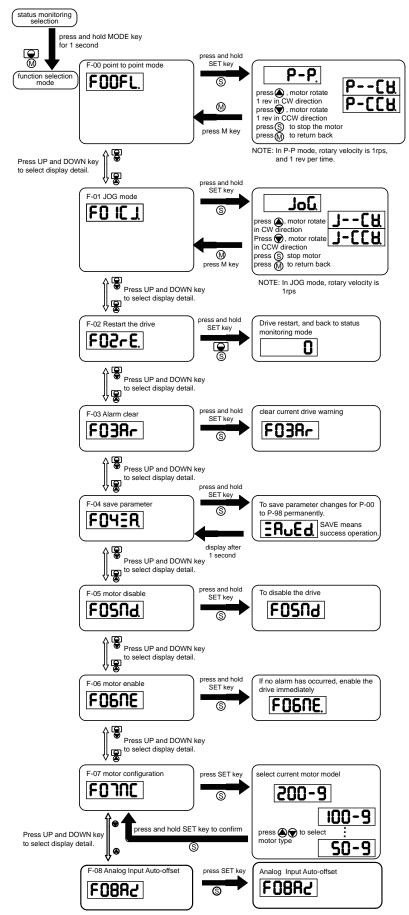
5.4 Status Monitoring Selection Mode


To change the status monitoring type, please press to enter monitoring selection mode, and then use to make selections, and press to confirm. Steps are shown as follows:

N mode selection and setting	LED display	Description	Unit
n-00	n00 iu.	Motor Rotating Speed	RPM
n-01	n01.1	Position Error	Pulse
n-02	-02LE.	Pulse Counter	counts
n-03	n03 iE.	Encode Counter	counts
n-04	nOH iP.	Command Position Counter	counts
n-05	n05 it.	Drive Temperature	x 0.1℃
n-06	n06 iU	DC Bus Voltage	x0.1V
n-07	n0 78H	Fault History 1	
n-08	n088H	Fault History 2	
n-09	n098H	Fault History 3	
n-10	n IOAH	Fault History 4	
n-11	n I IRH	Fault History 5	
n-12	n 1588	Fault History 6	
n-13	n 1388	Fault History 7	
n-14	n 1488	Fault History 8	

5.5 Function Mode Control

In function mode (display F+ parameter number), you can select functions for preoperational mode, restart the drive, enable or disable the drive and so on. In status monitoring mode, press and hold if for 1 second will enter function control mode. Press is to select function, and then press and hold to confirm or execute the function. (NOTE: F-00(FL) and F-01(CJ) excepted)

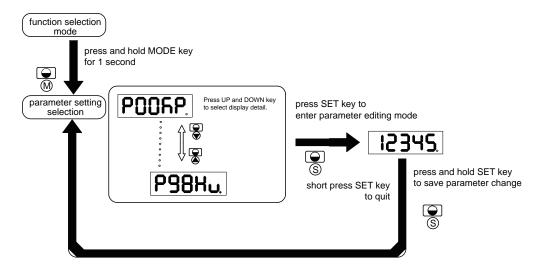

5.5.1 Function Mode Description

Function mode details are as follows:

Function mode number	LED display	Description
F-00	FOOFL.	point to point position mode: 1) rotating speed: 1rps 2)travel distance: 1rev
F-01	FO IC J.	JOG mode: JOG speed 1rps
F-02	F02rE.	Restart the drive
F-03	FOBAr	(F-03AR) Clear drive's current alarm
F-04	FOYER	(F-04SA) Save parameter changes for P-00 to P-98
F-05	FOSNd	(F-05MD) Drive disable
F-06	FOBNE.	(F-06ME) Drive enable
F-07	FONC.	(F-07MC) Select motor specification
F-08	F0884	(F-08AZ)Analog auto tunning

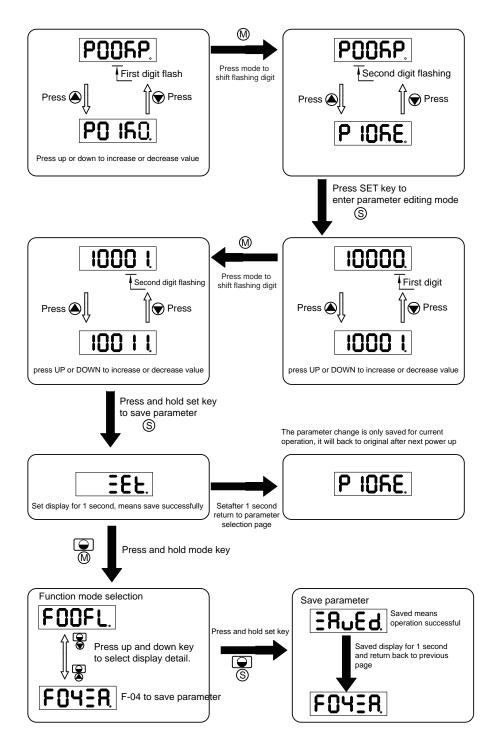
5.5.2 Operation Flow Chart

5.6 Parameter Setting Mode

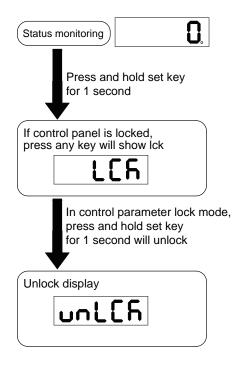

5.6.1 Parameter Setting Description

The parameter setting mode (P+parameter number) allows you to select, display and edit the required

parameter. In function control mode, press and hold with for 1 second to enter parameter setting mode. Use is to select required parameter, and press is to view or edit the parameter. Press

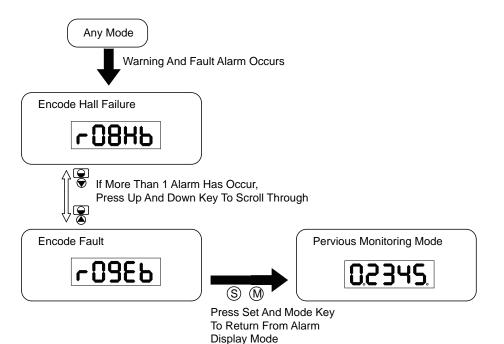

again to quit and no change will be saved. Press and hold with for 1 second to save the parameter change. However this change will NOT be saved at next power on.

If you want to save parameter PERMANENTLY, please go into function control mode (F+parameter number), and use F-04SA function.


5.6.2 Parameter Editing Examples

5.7 Control Panel Lock

In order to prevent faulty use on key panel, key panel lock is featured on all M2AC servo drives. When lock function is on, no function can be changed directly on drive's control panel.



5.8 Warning And Fault Display

When power is applied, if any of the following warnings are detected by the drive, the LED display on the drive will switch into warning or fault display mode immediately.

If more than one warning is detected, you can scroll through by press 🙆 💟 button. Press 💹 or

button to clear the warning display and back to pervious display mode.

Rev. 1.0 8/21/2017

LED display	Description	LED display	Description
r0 lot	Drive over temperature	ר ואננ	CW limit is activated
r02ur	Internal voltage fault	r ISJL	CCW limit is activated
r03uH	Over voltage	r 16[L	Current limit
- OHHC			Communication error
rOSLC	Over current	r 183F	Parameter save failed
r06rC		r 19LP	Phase loss of the main circuit
-08нь	Bad hall sensor	-20Fo	STO is activated
-09Eb	Encoder error	-5 IrF	Regeneration failed
r IOPL	Position error	40527	Low voltage
r I ILu	Low voltage	-2398	Q program is empty
r IZou	Velocity limited	- 2444	Motion Command Received While Motor in Disable
r IBLE	CW limit or CCW limit activated		

6. Preoperational mode

When preoperational mode is operating, please disconnect servo motor from any mechanical system to prevent any damages and accidents. Please perform this operation under no load condition.

6.1 Inspection Before Trail Run

In order to avoid any accidents and damages to servo drive and mechanical systems, we strongly recommend following safety checks before you turn on the drive.

1) Connection inspections

Please ensure secure wirings for power connector P1, motor connector P2, Encoder connector CN3, communication connector CN1. Ensure wirings connection, and wires are correctly insulated (not short circuit) for all connectors.

Ensure ground wire from power connector P1, and motor connector P2 are securely connected (screwing) to the shield ground.

2) Power supply inspection

Check and ensure voltage supplies between L1/L2/L3, meets drive's power supply specifications.

Check and ensure voltage between L1C/L2C is within the correct supply voltage range.

- 3) Ensure secure installation of servo drive and motor.
- 4) Ensure no load is installed on the servo motor.

6.2 Trail Run Procedure

Step	Details	Description
1	Please securely install the motor.	 The motor can be installed on the machine. Ensure no load is installed on the servo motor.
2	Please ensure the wiring between the drive and motor is correctly.	 Terminal U,V,W and FG must connect to Red, Yellow ,Blue and Yellow/Green cable separately (U:Red, V:Yellow, U:Blue, FG:Yellow/Green).If not connect to the specified cable and terminals, then the drive cannot control motor. Ensure to connect encoder cable to CN2 connector correctly.
3	Please make sure the main power circuit wiring connect correctly.	Refer to Section 3.1 Connecting to Peripheral Devices to confirm the main power circuit wiring connect correctly.
4	Supply the Power	Do not supply 380VAC power supply into the servo system.
5	The LED Display will show as follows without alarm: When the alarm occurs, it will display: COBHb COSEb	 When the power is on ,the normal display should be shown without any alarm codes and the drive is disabled. If display shows alarm codes such as r-08 and r-09. It means that the encoder feedback connection is incorrectly. Check if the encoder wiring of servo motor is loose or incorrect. Please refer to the other alarm trouble shooting10.
6	User need to setup a motor brake control circuit when using a electromagnetic brake motor.	Please refer to Section 3.4 Electromagnetic Brake for more details.
7	Motor Configuration	Configure the correct motor that has been used with the M2 Servo Suit or the operation panel. Please refer to Motor Configuration 6.3
8	JOG Trail Run without Load	Ready to run JOG trail if all steps above are done.

6.3 Motor Configuration Manually

Before JOG mode operation, M2 series AC servo drive requires motor configuration setup. For more details about how to configure your motor specification, please refer to chapter 2.3.

6.3.1 Use Drive Control Panel To Setup

Motor information and LED display list:

LED display	Motor Model Number	LED display	Motor Model Number
SO-F	SM0401AE2-KCD-NNV	SO-9	SM0401AE4-KCD-NNV
100-F	SM0402AE2-KCD-NNV	100-9	SM0402AE4-KCD-NNV
3-002	SM0601AE2-KCD-NNV	6-002	SM0601AE4-KCD-NNV
400-F	SM0602AE2-KCD-NNV	400-9	SM0602AE4-KCD-NNV
250-F	SM0801AE2-KCD-NNV	250-9	SM0801AE4-KCD-NNV
500-F	SM0802AE2-KCD-NNV	500-9	SM0802AE4-KCD-NNV
7SO-F	SM0803AE2-KCD-NNV	750-9	SM0803AE4-KCD-NNV

For more MOONS' motor information, please refer to appendix 1.For example: To setup a drive for model: SM0402AE4-KCD-NNV09 motor. These are the following steps:

Step	LED display	Description
1	FOOFL.	Press 🚺 into the Function Parameters mode at the Monitor Status mode
2	FONC	Press the 🚺 and 💟 key to select F07 (MC)
3	200-9	Press key into value setting mode.
4	100-9	Press () key to change value.
5	ERuEd	Press and hold key for 1 second to confirm motor configuration.
6	FOINC	
		Parameter is effective only after the servo drive is restarted.

6.3.2 Use Software To Config Motor

User can also use M Servo Suite to configure motor information

step 1: Run M Servo Suite on PC, and select the correspondent communication port

step 2: after successful connection, use the drive configuration page to setup

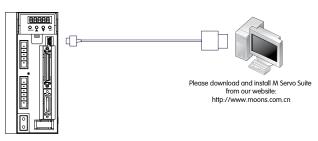
M Servo Suite V1.0.14.1113	0.0.0			
Project Configuration Q Programer Drive Tools Help				
🞯 Open Project 🚽 Save Project 😥 Connect 🥏 Restore 🗼 Alarm History 🔵 Language(语言) 👻 🔞 Help				
MOONS' Drive M2DV-1D82Q Port moving in Getter ways Rev	COM3 32 [0] Servo On Alarm Reset Upload Al from Drive & Do	wnload All to Drive STOP		
Configuration Tuning - Sampling Parameter Table Q Pr	ogrammer	SCL Command History & Response		
Motor Information Config Speed Limit 10.000 Reverse motor rotating direction Acc/Dec Limit 1500.000		*		
Control Mode Settings Node ID Power-Up BaudRate				
32 SCL Add. Data Format	s(bps)			
exadecimal O Deci	nal			
Transmit Delay 2 🚔 ms 🔲 Auto Execute Q Program	n at Power Up	Clear Script		
		Hide CheckSum		
		Status Monitor I/O Status Alarm Param Register		
Position Error Fault 💿 2000 🚔 Counts 🔘 Not used	Jerk Filter 💿 500 🚔 Hz 💿 Not used			
		= Closed(C) = Open(O) Digital Input Digital Output		
Digital Input Digital Output Analog Input		X1(GP) C O Y1(GP)		
X1 General Purpose	X7 General Purpose	X2(GP) C O Y2(GP)		
X2 General Purpose	X8 General Purpose	X3(SvrOn) C O Y3(GP) X4(GP) C O Y4(GP)		
X3 Servo On when closed -	X9 General Purpose	○ X5(GP) C O ○ Y5(GP)		
X4 General Purpose 🗸	X10 General Purpose	X6(GP) X7(GP)		
X5 General Purpose 🗸	X11 General Purpose FI	X8(GP) Analog Input		
X6 General Purpose 🗸	X12 General Purpose FI	X9(GP) Ain Diff. 0.000V		
X1/X2 Input Noise Filter		X10(GP) X11(GP) Ain 1 0.000V		
0.417 📥 us(Pulse Width) = 1200 📥 KHz Cutor	f Frequency @50% duty cycle	X12(GP) Ain 2 0.000V		

Step 3: click on motor config to do motor selection as follows.

Motor Select	-	March Street of Con	×		
Motor Motor List	SM0601AE2		e motor rotating direction		
Part No. Motor Spec Poles Continuous C Peak Current	8 Current 1.68	Amps Amps	Speed Limit 10.000 $\stackrel{\land}{=}$ rps \checkmark Accel/Decel Limit 1500.000 $\stackrel{\land}{=}$ rps/s \checkmark		
Encoder					
Single Ended. Decreases noise immunity. Prevents error detection. OK Cancel					

Step 4: Click "download to drive" to save the setting to the drive.

6.4 Operations of JOG Mode


Step	LED display	Description
1	P006P	Press it switch the Monitor Status mode into the Drive Parameters Configuration mode
2	P6 13 .	Scroll 🚺 key to select parameter P62 (SI)
3	5	Press Skey into value setting mode
4	3	Scroll Key to change values.
5		Press and hold set for 1 second to confirm the setting value.
6	FOOFL	Press wey into the Function Operation mode.
7	FOGNE	Scroll , key to select Function F06 (MC) to enable the motor.
8	FOGNE.	Press and hold SET key for 1 second, the drive will be enabled. The last dot will light to shows the drive is enabled.
9	FO IC J	Scroll the one key into function F01 (CJ) to run JOG mode.
10	JoL	Press the Skey into JOG mode
11	<u>J[H</u>	Press the Key ,the motor will rotate at CW direction with the speed 1rps.
12	J-CCH	Press the read to the motor will rotate at CCW direction with the speed 1rps.
13	JoL	Press the Skey to stop the motor
14	FOICL	Press the Mey back to the Function Operation mode.

6.5 Configuration by Personal Computer

In order to ensure servo drive and motor meet your operation requirements, we strongly recommend customers to use "M servo suite" for following configuration setups:

- 1. Servo Motor model selection and configuration
- 2. Operational mode selection
- 3. Define drive's input/output mode
- 4. Apply auto tuning function on PID parameters for optimized motor performance.
- M Servo Suite's detail, please refer to the software manual.

Connect to Personal Computer

Interface of M2 Servo Suite

M060	10601AE2 (1) Config Speed Limit 60.000)00 rps	Main Mode	e Position (IO Controlled)	•	Go t
Rev	erse motor rotating directi	on Accel Limit 3000.0	000 rps/s	2n 2 de	21: Point to Point Pos.	-	Go t
ontrol Mode Settings							
Position Control Electronic Gearing(Steps/Rev)							
	Ilse & Direction				1st 10000 🔶 2nd	2000	00 🍦
	W & CCW Pulse X2 is closed X3 is Open				Electronic Gearing Rati	io	
A/B Quadrature X2 is Open Differential Apples			(3)	Not Used Numerato	r 10	00 🚖	
	ngle-Ended Analog Input 1	Differential Analog Single Ended Analog			Denomina	tor 10	00 🚖
ositio	on Error Fault lo 2000	Counts 💿 Not used		Jerk F		Not	
nput	n Error Fault 2000 A Output			Jerk F		© Not	
nput	on Error Fault (a) 2000	Counts O Not used	(4	Jerk F		© Not	
nput	n Error Fault 2000 Cutput	Counts O Not used	• x7	Jerk F	ilter 🖲 5000 🗼 Hz	Not	used
iput Digital	n Error Fault 2000 Contract Contract	Counts O Not used	• X7 • X8)	ilter	◎ Not	used
n put Digital X1	on Error Fault	Counts O Not used		General Pur	ilter		used
nput Digital X1 X2	n Error Fault 2000 2000 2000 2000 2000 2000 2000 20	Counts O Not used	▼ X8	General Pur General Pur	ilter		used
nput Digital X1 X2 X3	n Error Fault 2000 2000 2000 2000 2000 2000 2000 20	Counts O Not used	▼ X8▼ X9	General Pur General Pur General Pur	riter		used
Digital X1 X2 X3 X4	on Error Fault	Counts O Not used	 X8 X9 X10 	General Pur General Pur General Pur General Pur	ilter		used

Configuration Steps	Details	
Step 1	Motor Configuration	
Step 2	Select Control Mode	
Step 3	Further configuration	
Step 4	I/O configuration	
Step 5	Tuning	

7. Operation Mode Selection

7.1 General Function Setting

7.1.1 Drive Servo on settings

To control servo motor enable/disable switch

1) servo on signal

In default setting, servo ON signal configured as follows:

Signal Name	PIN (CN2)	Condition	Function
Х3	29 (X3+)	Closed	Servo motor enable Servo ON
	31 (X3-)	Open	Servo motor disable Servo OFF

2) Definition for Servo On signal

Customers can Change parameters P-62 (SI) and P-14 (PM) to setup

A. When P-14 (PM) = 2, parameter settings are as follows:

P-14 (PM)	P-62 (SI)	Condition	Function
	1	Closed	If P-14(PM)=2 and P-62(SI)=2, driver will enable when power-up,and then switch to disable.
P-14 (PM) = 2		Open	Servo Enable
(default)	2	Closed	Servo motor enable Servo ON
	(default)	Open	Servo motor disable Servo OFF
	3		Enable servo motor when power ON

B. When P-14 (PM) = 5, the parameter settings are as follows:

P-14 (PM)	P-62 (SI)	Condition	Function
	1	Closed	Servo motor disable Servo OFF
	1	Open	Servo motor enable Servo ON
P-14 (PM) = 5	2	Closed	Servo motor enable Servo ON
	(default)	Open	Servo motor disable Servo OFF
	3		Servo motor disable when power ON

NOTE: if P-14(PM)=5, regardless P-62(SI)settings. The drive will be in disable mode(Servo OFF) at power up. Please use input X3 to enable based on P-62(SI) setting.

3) Software Configuration

In drive configuration page-----input & output select X3 function to setup.

Input & Output								
Digital Input Digital Output Analog Input								
X1	Pulse 🗸	X7	General Purpose 👻					
X2	Direction 🔹	X8	General Purpose 🔹					
X3	Servo On when closed 🔹	X9	General Purpose					
X4	General Purpose 🔹	X10	General Purpose					
X5	General Purpose 🔹	X11	General Purpose					
X6	General Purpose 🔹	X12	General Purpose					

7.1.2 Alarm Reset

It is used to clear drive warnings or faults, it can be set via P-63 (AI)

Signal Name	PIN (CN2)	P-63 (AI)	Fun	ction			
			During normal operation, input X4 must keep Open (HIGH). Change will ONLY be trigged at the change of signal. When X4 changes from Open (HIGH) to Close (LOW), the warning or fault alarms will be cleared.				
		1	X4 Low Fault None	High X4 Low Fault None			
			1) X4 at HIGH, alarm NOT cleared 2) At point A, X4 change from HIGH to LOW, alarm is cleared	 X4 is low, alarm NOT cleared At point A, X4 change from LOW to HIGH, alarm NOT cleared At point B, X4 change from HIGH to LOW, alarm cleared 			
X4	35 (X4+) 34 (X4-)		During normal operation, input X4 must keep CLOSED (LOW). Change will ONLY be trigged by the change of signal. When X4 changes from CLOSE (LOW) to OPEN (HIGH), the warning or fault alarms will be cleared.				
		2	High X4 Low Occur Fault None	X4 High Low Fault NoneA B			
			 X4 at LOW, alarm NOT cleared At point A, X4 change from LOW to HIGH, alarm cleared At point B, X4 level from high to low, the alarm does not clear 	 X4 is HIGH, alarm NOT cleared At point A, X4 change from HIGH to LOW, alarm NOT cleared At point B, X4 change from LOW to HIGH, alarm cleared 			
		3 (default)	General purpose input				

Software Configuration

In drive configuration page ----- Input & output select X4 functions to setup.

Tinput & Output Digital Output Analog Input							
X1	Pulse 🔹	X7	General Purpose 🔹				
X2	Direction •	X8	General Purpose 🔹				
X3	Servo On when open 🔹	X9	General Purpose				
X4	General Purpose	X10	General Purpose				
X5	General Purpose Reset alarm when closing	X11	General Purpose FI				
X6	Reset alarm when opening	X12	General Purpose				

7.1.3 CW/CCW limit

In order to prevent accidents that might be caused by mechanical layers moving out of range, it is highly necessary to set CW/CCW position limit by using external I/O switches.

P-64 (DL)	Description	Condition	Signal Name	Function
			X5	Stop in CW direction, CW limit warning ON
4 4	X5 sets CW limit	Closed	X6	Stop in CCW direction, CCW limit warning ON
1,4	X6 sets CCW limit Effects when X5/X6 is closed	Open	X5	Rotating in CW direction as normal
		Open	X6	Rotating in CCW direction as normal
		Closed	X5	Rotating in CW direction as normal
2,5	X5 sets CW limit X6 sets CCW limit	Closed	X6	Rotating in CCW direction as normal
2,0	Effects when X5/X6 is open	Open	X5	Stop in CW direction, CW limit warning ON
		Open	X6	Stop in CCW direction, CCW limit warning ON
3,6,13,16	X5, X6 as general purpose input (default)			
7	X5 sets CW limit	Closed	X5	Stop in CW direction, CW limit warning ON
7	Effects when X5 is closed X6 as general purpose input	Open	X5	Rotating in CW direction as normal
0	X5 sets CW limit	Closed	X5	Rotating in CW direction as normal
8	Effects when X5 is open X6 as general purpose input	Open	X5	Stop in CW direction, CW limit warning ON
	X6 sets CCW limit	Closed	X6	Stop in CCW direction, CCW limit warning ON
9	Effects when X6 is closed X5 as general purpose input	Open	X6	Rotating in CCW direction as normal
	X6 sets CCW limit	Closed	X6	Rotating in CCW direction as normal
10	Effects when X6 is closed X5 as general purpose input	Open	X6	Stop in CCW direction, CCW limit warning ON
			X6	Stop in CCW direction, CCW limit warning ON
	X6 sets CW limit X5 sets CCW limit Effects when X5 is closed	Closed	X5	Stop in CCW direction, CCW limit warning ON
11,13			X6	Rotating in CW direction as normal
		Open	X5	Rotating in CCW direction as normal
			X6	Rotating in CW direction as normal
	X6 sets CW limit	Closed	X5	Rotating in CCW direction as normal
12,16	X5 sets CCW limit Effects when X5 is open		X6	Stop in CW direction, CW limit warning ON
		Open	X5	Stop in CCW direction, CCW limit warning ON
	X6 sets CW limit	Closed	X6	Stop in CW direction, CW limit warning ON
17	Effects when X6 is closed X5 as general purpose input	Open	X6	Rotating in CW direction as normal
	X6 sets CW limit	Closed	X6	Rotating in CW direction as normal
18	Effects when X6 is open X5 as general purpose input	Open	X6	Stop in CW direction, CW limit warning ON
	X5 sets CW limit	Closed	X5	Stop in CCW direction, CCW limit warning ON
19	Effects when X5 is closed X6 as general purpose input	Open	X5	Rotating in CCW direction as normal
	X5 sets CCW limit	Open	X5	Rotating in CCW direction as normal
20	Effects when X5 is open X6 as general purpose input	Open	X5	Stop in CCW direction, CCW limit warning ON
	No as general purpose input	0000		

Software Configuration

In drive configuration page-----input& output X5/X6 to select correspondent functions

	General Purpose At end of travel, (X5=CW,X6=CCW) will be closed At end of travel, (X5=CW,X6=CCW) will be open		Jerk Filter 💿 500 📥 Hz 🔘 Not used
	At end of travel, X5=CW will be closed, X6=GP		
Digital	At end of travel, X5=CW will be open, X6=GP At end of travel, X6=CCW will be closed, X5=GP At end of travel, X6=CCW will be open, X5=GP		
X1	At end of travel, X6=CCW will be open, X5=GP At end of travel, (X5=CCW,X6=CW) will be closed	X7	General Purpose 👻
X2	At end of travel, (X5=CCW,X6=CW) will be open At end of travel, X5=CCW will be closed, X6=GP	X8	General Purpose 🔹
X3	At end of travel, X5=CCW will be open, X6=GP	X9	General Purpose FI
X4	At end of travel, X6=CW will be closed, X5=GP At end of travel, X6=CW will be open, X5=GP	X10	General Purpose FI
X5	General Purpose 🗸 🗸	X11	General Purpose FI
X6	General Purpose 🗸	X12	General Purpose FI

7.1.4 Global Gain Switch Function

Use input X7 for global gain selection. When gain selection function is used, it helps the servo drive to run the motor with least time delay and as faithful as possible against the host command requirement. Especially in the cases, when load characteristic changes significantly, change off gain value will reduce motor's settling time, motor vibration and so on. It will highly optimize motor's overall performance. The two global gain parameters are: P-00 (KP), and P-01 (KG).

In factory default mode, function selection mode disabled. It can be set via M servo suite software or P-65 (MI) first digit (from right to left) in parameter setting mode directly from the drive.

Signal Name	PIN	P-65 (MI)	Condition	Function	
			Closed	Use global gain 1P-00 (KP)	
		0001	Open	Use global gain 2P-01 (KG)	
X7	X7+ (39) X7- (38)		Closed	Use global gain 2P-01 (KG)	
	X7- (38)	0002	Open	Use global gain 1P-01 (KP)	
		0003		Always use global gain 1P-00(KP)	
		(default)			

Software Configuration

In drive configuration page-----input/output select X7 function to setup.

-Input & Output									
Digital Input Digital Output Analog Input									
X1	Pulse 🗸) X7	General Purpose 🔹						
X2	Direction 🗸) X8	General Purpose Gain Select when closed						
X3	Servo On when open 🗸) X9	Gain Select when open						
X4	Reset alarm when closing 🗸 🗸) X10	General Purpose FI						
X5	General Purpose 🗸 🗸) X11	General Purpose FI						
X6	General Purpose 🔹	X12	General Purpose						
-X1/	X1/X2 Input Noise Eilter								

7.1.5 Control Mode Switch

M2 series AC servo drive allows to choose 2 types of control mode by using external input switch X8. The control mode can be configured via two parameters P-12 (CM) and P-13 (CN).

In factory default mode, control mode switch function is disabled. It can be configured via M servo suite or P-65 (MI) third digit (from right to left) in parameter setting mode in the drive.

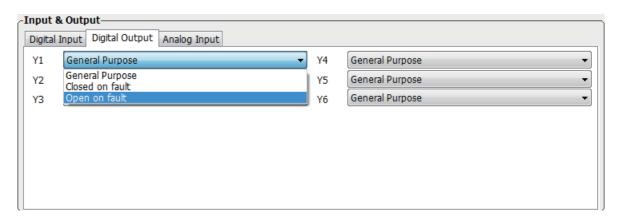
Signal Name	PIN	P-65 (MI)	Condition	Function
		4	Closed	Use Control mode 1P-12 (CM)
			Open	Use Control mode 2P-13 (CN)
X8	X8+ (12) X8- (32)		Closed	Use Control mode 2P-13 (CN)
	X0 ⁻ (32)			Use Control mode 1P-12 (CM)
		□3□□ (Default)		Always use control mode 1P-12(CM)

Software Configuration

In drive configuration page-----input/output select X8 function to setup.

ſ	/Input & Output									
	Digital Input Digital Output Analog Input									
	X1	Pulse 🗸	X7	General Purpose 🔹						
	X2	Direction 💌	X8	General Purpose 🗸						
	X3	Servo On when open 👻	X9	General Purpose Change Control Mode when closed						
	X4	Reset alarm when closing 🔹	X10	Change Control Mode when open						
	X5	General Purpose 🗸	X11	General Purpose						
	X6	General Purpose 🔹	X12	General Purpose						

7.1.6 Drive On Fault Output

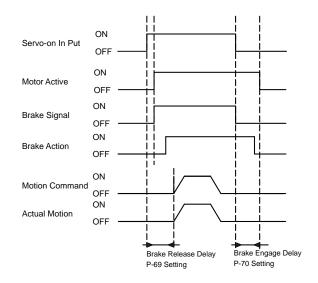

When warnings as below are shown, the drive will send "on fault" output and it will also disable the drive immediately.

Warning list: over position error, encoder error, over temperature, over voltage, low voltage, internal voltage fault, STO warning, FPGA error, over current, over velocity limit, bad hall sensor. On fault output signal can be set by P-65 (AO).

Signal Name	PIN	P-65 (AO)	Condition	Function	
			Closed	When no warning, output is closed	
		20	Open	When warning occurs, output is open	
Y1	Y1+ (37) Y1- (36)	(37) (36) □1□□	Closed	When warning occurs, output is closed	
	(00)		Open	When no warning, output is open	
		□3□□ (Default)		General purpose output, function disabled	

Software Configuration

In drive configuration page-----input/output select Y1 function to setup.



7.1.7 Motor Brake Control

Servo motor brake is only used for holding the stalling status when motor is disabled or power OFF. It ensures the motor's mechanical layers will NOT move due to gravity or any other external forces.

In order to prevent damage to the brake, there are delay sequences during the brake operation. Please be cautious with brake operation sequence.

Brake disengage delay and engage delay can be configured via M servo suite software, or change parameters P-69 (BD) and P-70 (BE) directly from the drive.

Name	PIN	P-67(BO)	Condition Function		
		0	Closed	Hold on brake, brake holds the motor shaft	
	Y2 Y2+ (11) Y2- (10)	2	Open	Release brake, brake releases the motor shaft	
Y2			Closed	Release brake, brake releases the motor shaft	
12			Open	Hold on brake, brake holds the motor shaft	
		3		General purpose input, output function disabled	
		(default)		General purpose input, output function disabled	

Software Configuration

In drive configuration page-----input/output select Y2 function to setup.

Input & Output					
put Analog Input					
	Y4	General Purpose 🗸			
-	Y5	General Purpose 🔹			
brake	Y6	General Purpose 👻			
	put Analog Input				

7.1.8 Servo Ready Output

When servo drive is power on, if no warning has occurred, output Y5 will outputs "servo ready" signal.

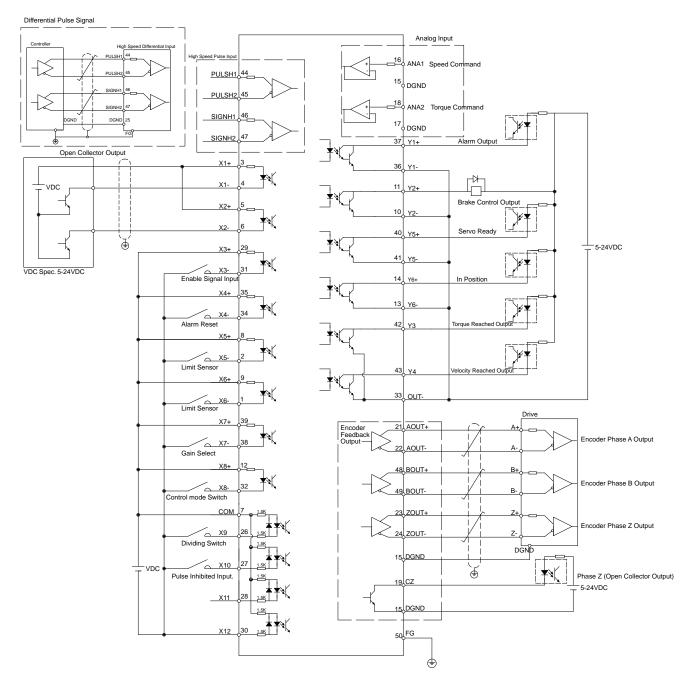
Servo ready function can be configured via M servo suite software, or by change parameters P-68 (MO) the third digit (from right to left) on the drive directly.

Signal Name	PIN	P-68(MO)	Condition	Function	
		2 20	Closed	Closed when servo is not ready	
			Open	Open when servo is ready	
¥5	Y5 Y5+ (40) Y5- (41)		Closed	Closed when servo is ready	
			Open	Open when servo is not ready	
		□3□□		Constal purpose function disabled	
		(default)		General purpose, function disabled	

Software Configuration

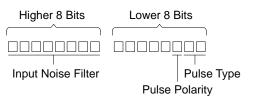
-Input 8	-Input & Output-						
Digital I	Digital Input Digital Output Analog Input						
Y1	General Purpose 🔹	Y4	General Purpose 🗸 🗸				
Y2	General Purpose 🔹	Y5	General Purpose 🔹				
Y3	General Purpose	Y6	General Purpose Closed when servo ready				
			Open when servo ready				

7.2 Position Mode


Position mode is widely used in the application where precision positioning is required. In M2 series AC servo drives there are 3 types of position mode: digital pulse position mode, analog position mode and position table mode.

Mode	Control Signal	P-12 (CM) definitions	Description
Digital pulse position mode	Pulse & Direction CW/CCW Pulse A/B Quadrature	7	Up to 500KHz open collector input signal or up to 2MHz differential input signal
Analog position mode	+10V~-10V Analog signal	22	Use analog voltage signal for position control
Position table	Digital input signal	25	It has two motion control modes: linear motion with maximum of 64 position set points, and rotary motion with maximum of 32 position division points

NOTE: Configuration setting by M servo suite is recommended.


7.2.1 Digital Pulse Position Mode Connection Diagram

7.2.2 Input Pulse Type And Input Noise Filter

There are three types of pulse modes: STEP & Direction; CW/CCW Pulse; A/B Quadrature.

Parameter P-43 (SZ) uses decimal numbers to define pulse input type, polarity and input filter frequency. Transfer into binary number, the HIGHER 8 bits of the number defines input filter frequency, and the LOWER 8 bit defines pulse input type, and polarity.

7.2.2.1 Input Pulse Type Setting

Parameter	Pulse	CW direction setting	CW	CCW	setting value (decimal)
	Step & Direction	X2 on	Pules OFF OFF DIR OFF	Pules 0N 0FF ON DIR 0FF	0
		X2 Off	Pules 0FF 0FF DIR 0FF	Pules ON OFF	4
P-42 (SZ)	CW/CCW	Pulse On X1	CW Pulse ON OFF CCW Pulse ON OFF	CW Pulse ON OFF CCW Pulse ON OFF	1
Lower 8 bits		Pulse On X2	CW Pulse OF OFF CCW Pulse ON	CW Pulse ON OFF CCW Pulse ON OFF CCW Pulse ON OFF CCW Pulse OFF CFF CFF CFF CFF CFF CFF CFF CFF CFF	5
		X1 Lead X2	A ON OFF J J J J J J J J J J J J J J J J J J	A ON 90° OFF 00 00 000 B ON 000 000 000 000	2
		X2 Lead X1	A ON 190° OFF 00F 00F 00F 00F 00F 00F 00F 00F 00F	A ON TOTAL OF THE OFFENSION OFFENSION OFFENSION OF THE OFFENSION OFF	6

7.2.2.2 Input Noise Filter Setting

The input noise filter is a low pass filter. When pulse input and output duty cycle is set to 50%, the P-43 (SZ) setting value are as follows

Parameter	setting value (decimal)	Filter Frequency	setting value (decimal)	Filter Frequency
	25344	100K	4864	500K
	16640	150K	3072	750K
P-42 (SZ)	12544	200K	2304	1M
Higher 8 bits	9984	250K	1792	1.2M
	8192	300K	1280	1.5M
	6144	400K	1024	2M

7.2.2.3 Parameter P-43 (SZ) Setting

Parameter P-43 (SZ)'s higher 8 digit and lower 8 digit set the definition for input filter frequency and pulse type, the setting value are as shown in table below:

Filter Frequency	pulse type	CW/CCW condition	P-43 (SZ) setting value	Filter Frequency	pulse type	CW/CCW condition	P-43 (SZ) setting value
	Step &	X2 on	25344		Step &	X2 on	4864
	Direction	X2 Off	25348		Direction	X2 Off	4868
40014	000/0000	Pulse On X1	25345	5001/	014/0014/	Pulse On X1	4865
100K	CW/CCW	Pulse On X2	25349	500K	CW/CCW	Pulse On X2	4869
	A/B	X1 Lead X2	25346		A/B	X1 Lead X2	4866
	Quadrature	X2 Lead X1	25350		Quadrature	X2 Lead X1	4870
	Step &	X2 on	16640		Step &	X2 on	3072
	Direction	X2 Off	16644		Direction	X2 Off	3076
45014	0)4//00)4/	Pulse On X1	16641	7501/		Pulse On X1	3073
150K	CW/CCW	Pulse On X2	16645	750K	CW/CCW	Pulse On X2	3077
	A/B	X1 Lead X2	16642		A/B	X1 Lead X2	3074
	Quadrature	X2 Lead X1	16646		Quadrature	X2 Lead X1	3078
	Step &	X2 on	12544		Step &	X2 on	2304
	Direction	X2 Off	12548	- 1M	Direction	X2 Off	2308
200		Pulse On X1	12545		CW/CCW	Pulse On X1	2305
200	CW/CCW	Pulse On X2	12549			Pulse On X2	2309
	A/B Quadrature	X1 Lead X2	12546		A/B	X1 Lead X2	2306
		X2 Lead X1	12550		Quadrature	X2 Lead X1	2310
	Step &	X2 on	9984		Step &	X2 on	1792
	Direction	X2 Off	9988		Direction	X2 Off	1796
250K		Pulse On X1	9985	1.014	CW/CCW	Pulse On X1	1793
250K	CW/CCW	Pulse On X2	9989	1.2M		Pulse On X2	1797
	A/B	X1 Lead X2	9986		A/B	X1 Lead X2	1794
	Quadrature	X2 Lead X1	9990		Quadrature	X2 Lead X1	1798
	Step &	X2 on	8192		Step &	X2 on	1280
	Direction	X2 Off	8196		Direction	X2 Off	1284
300K	CW/CCW	Pulse On X1	8193	1.5M	CW/CCW	Pulse On X1	1281
3001		Pulse On X2	8197	1.51		Pulse On X2	1285
	A/B	X1 Lead X2	8194		A/B	X1 Lead X2	1282
	Quadrature	X2 Lead X1	8198		Quadrature	X2 Lead X1	1286
	Step &	X2 on	6144		Step &	X2 on	1024
	Direction	X2 Off	6148	2.014	Direction	X2 Off	1028
400K	CW/CCW	Pulse On X1	6145		CW/CCW	Pulse On X1	1025
400K		Pulse On X2	6149	2.0M		Pulse On X2	1029
	A/B	X1 Lead X2	6146		A/B	X1 Lead X2	1026
	Quadrature	X2 Lead X1	6150		Quadrature		1030

Software Configuration

In software motor configuration page----control mode settings to select pulse input type and input filter type.

-Control Mode Settings ————		
Position Control		Electronic Gearing(Steps/Rev)
 Pulse & Direction CW & CCW Pulse A/B Quadrature Differential Analog 	 Direction is CW when X2 is closed X2 is Open 	1st 10000 ↓ 2nd 10000 ↓ Electronic Gearing Ratio □ Not Used Numerator 1000 ↓
Single-Ended Analog Input 1		Denominator 1000 🚔
Position Error Fault	Counts 💿 Not used	Jerk Filter) 500 📩 Hz 🔘 Not used
Digital Input Digital Output Ana	log Input	

7.2.3 Control Pulse Dividing Switch Function

X9 is used as control pulse dividing switch function. When this function is on, it will allow the drive to change the number to encoder counts for per motor revolution. The first pulse dividing ratio is set via parameter P-39 (EG), the second pulse dividing ratio is set via P-40 (PV). Parameter second digit of P-65 (MI) (right to left) is used to set switching conditions.

In factory default mode, pulse dividing switch is disabled. It can be set by M servo suite software or parameter P-64 (MI) directly from the drive's panel function.

Signal Name	PIN	P-65 (MI)	Condition	Function	
			Closed	Use 1st pulse dividing ratio P-39 (EG)	
	X9 X9 (26)	0010	Open	Use 2nd pulse dividing ratio P-40 (PV)	
XO		(26)	Closed	Use 2nd pulse dividing ratio P-40 (PV)	
A9			Open	Use 1st pulse dividing ratio P-39 (EG)	
		□□3□ (default)		Always use 1st pulse diving ratioP-39(EG)	

NOTE: Please ONLY use pulse dividing ratio function, when no pulse command is sending into the drive. I.e. motor is NOT moving.

Software Configuration

In drive configuration page-----input/output select X9 function to setup pulse dividing switch function.

-Input &	Input & Output						
Digital I	Digital Input Digital Output Analog Input						
X1	Pulse -) X7	General Purpose 🔹				
X2	K2 Direction •		Change Control Mode when closed 🔹				
Х3	Servo On when open 👻		General Purpose				
X4	Reset alarm when closing 🗸		General Purpose				
X5	General Purpose 🗸		Dividing Swt. when open FI				
X6	General Purpose 🔹		General Purpose FI				

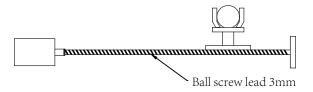
7.2.4 Pulse Inhibition Function

Pulse inhibition function use external input X10 in digital pulse position mode. When external input X10 is triggered, it will enforce the drive to stop receiving pulses input from any source, and stop the servo motor immediately.

In factory default mode, this function is disabled. It can be set via M2 servo suite or P-65 (MI) directly from the drive.

Signal Name	PIN	P-65 (MI)	Condition	Function		
		X10 (27) 2000	Closed	Allow input pulse		
			Open	Disallow input pulse		
X10	X10 (27)		Closed	Disallow input pulse		
	X10 (21)		Open	Allow input pulse		
				Conorol nurness input function dischlod		
	(default)			General purpose input, function disabled		

Software Configuration


In drive configuration page------input/output select X10 function to setup pulse inhibition function.

Input	Input & Output								
Digital	Digital Input Digital Output Analog Input								
X1	Pulse 🗸	X7	General Purpose 🔹						
X2	X2 Direction 🗸		Change Control Mode when closed 🔹						
X3	Servo On when open 👻	X9	General Purpose						
X4	Reset alarm when closing 🔹	X10	General Purpose						
X5	General Purpose 🔹	X11	General Purpose						
X6	General Purpose 🗸		Pulse Inhibited when open FI						

7.2.5 Electronic Gearing Ratio

Electronic gearing ratio using the host command pulse count per revolution times the electronic gearing ratio set on drive to set the actual rotatory pulse per revolution. This feature allows more freedom and setting options when certain pulse count or moving counter is required

If motor pulse per revolution is 10000 pulse/rev and the electronic gearing ratio is set to 1. In this case, if host computer send 10000 pulse, the motor will turn 1 revolution. If the electronic gearing ratio is set to 1/2, then motor will only move for 1 pulse position, when host send 2 pulses. i.e. 20000 pulses for 1 motor revolution. In some cases, reasonable electronic gearing ratio can simplify the calculation for the host when send pulse command.

Distance for screw lead, movements requirement 4mm

If no electronic greasing is used, the valuation will be as follows:

Since the screw distance is 3mm, i.e. when motor rotate one rev, the working load will move 3mm. if moving distance 4mm is required, it is 4/3 of rev

Pulse Count Requirement

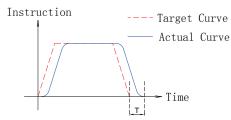
It will leads to infinite number with accumulative error in pulse number.

If use electronic gearing ratio

If 1 pulse is set to 1um, and 10000 pulse per rev, the Electronic gearing ratio can be set as follows:

$$\frac{3000}{10000} \times \frac{a}{b} = 1um$$

If Electronic gearing ratio is set to $\frac{a}{b} = \frac{10}{3}$, then 1 pulse send by the host, will leads to 1um movment on the moving object.


Parameters Setting

Parameter	Name	Data Range	Default	
P-39 (EG)	Required pulse per rev	200~51200	10000	Set Required pulse per rev
P-40 (PV)	Secondary Required pulse per rev	200~51200	10000	Set secondary Required pulse per rev
P-41 (EN)	Electronic gearing Ratio Numerator	1~1000	1000	Set Electronic gearing Ratio Numerator
P-42 (EU)	Electronic gearing Ratio Denominator	1~1000	1000	Set Electronic gearing Ratio Denominator

7.2.6 Jerk Smoothing Filter

Applying dynamic filter on speed and direction signals can significantly smoothing motor rotary motion, and reduce damages towards mechanical layer.

Jerk smoothing filter effects are as follows :

1) The smaller value of P-07 (KJ), the strong effect it will be.

2) Jerk smoothing filter will cause command delay time T, but it will not effect

in position accuracy.

Parameters Setting

Parameter	Name	Data Range	Default	
P-07 (KJ)	Jerk Filter Frequency	0~5000	5000	Set jerk smoothing filter parameter

NOTE: Setting to 0, means no filter effect.

7.2.7 In Position Error Output

In position mode, using the "in position error output" function can help the user the define motors in position status. When the difference between drive's total receiving pulse and motor's actual rotating pulse count is within the in position error range, the drive will send out a motor in position signal.

The forth digit of parameter P-68 (MO) defines Y6 output function. parameter P-46 (PD) defines in position error range. P-47 (PE) defines in position error timing duration. If the in position error is within the P-46 (PD) range for more than the time duration of P-47 (PE) setting, the drive will output motor in position signal.

Signal Name	PIN	P-68 (MO)	Condition	Function
		_	Closed	Closed means motor not in position
		5000	Open	Open means motor in position
Y6	Y6+ (14)		Closed	Close means motor in position
10	Y6- (13)		Open	Open means motor not in position
				Conoral purpose output function disabled
		(default)		General purpose output, function disabled

Parameters Setting

Parameter	Name	Data Range	Default	
P-46 (PD)	In position error range	0~32000	10	This parameter sets the in position error range, when in position error count is less than the range, drive will indicates motor in position.
P-47 (PE)	In position duration count	0~32000	10	If the position error is in the in-position range and last longer than the duration time, the motion is supposed to be complete and the motor is in position. If the time value is set to 100 the position error must remain in the range for 100 processor cycles before the motion is supposed to be complete. One processor cycle is 250µsec.

7.2.8 Gain Parameters For Position Control Mode

In position mode, reasonable gain parameters will let the servo system running and stop more smoothly, and accurately, and optimize its performance.

In most the cases, M2 servo suite software's auto tuning function will help you to tune these parameters. However, in some case customer can also use the fine tuning function from the software or parameter setting mode on the drive find out the best performance for you.

Parameter	Name	Data Range	Default
P-00(KP)	Global gain 1	0~32767	10000
P-01(KG)	Global gain 2	0~32767	12000
P-02(KF)	Proportional Gain	0~32767	10000
P-03(KD)	Derivational Gain	0~32767	3000
P-04(KV)	Damping Gain	0~32767	10000
P-05(KI)	Integrator gain	0~32767	500
P-06(KK)	Inertia Feedforward Constant	0~32767	800
P-07(KJ)	Jerk Filter Frequency	0~32767	5000
P-10(KE)	Deriv Filter factor	0~32767	15000
P-11(KC)	PID Filter factor	0~32767	25000

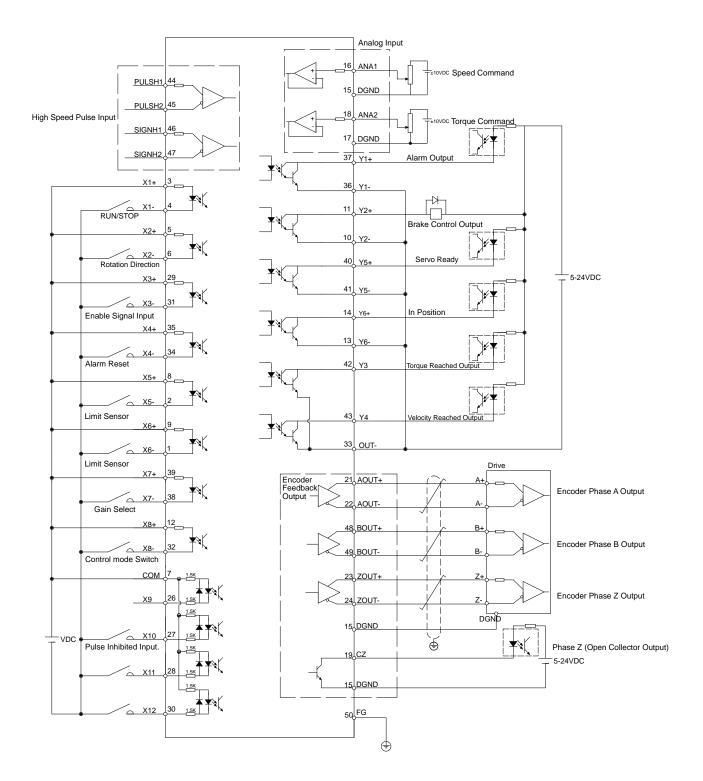
7.2.9 Software Configuration For Position Mode

The M servo suite can help you easily configured the drive and motor, as well as tuning parameters.

Configuration TL	uning - Sampling	Parameter Table				
-Motor Informati	ion				-Control M	ode
	Config	Speed Limit 1	10.000	rps	Main Mode	Position (IO Controlled) - Go to
Reverse motor	r rotating direction	Acc/Dec Limit 150	00.000	rps/s	X de Node	21: Point to Point Pos Go to
-Control Mode Se	ettings					
Position Control						Electronic Gearing(Steps/Rev)
Pulse & Direct	tion	Direction is CW wh	nen			1st 10000 🚔 2nd 10000 🚔
CW & CCW P	ulse	X2 is closed				Electronic Gearing Ratio
A/B Quadratu		X2 is Open				
Differential A	2	((3)			
Single-Ended	Analog Input 1					Denominator 1000
Position Error Fau		Counts 🔘 Not use	ed		Jerk Fil	ter
X1 Pulse				X7	General Purp	
			•			
X2 Direction			-	X8	General Purp	
	n when closed		•	X9	General Purp	
X4 General	Purpose		•	X10	General Purp	oose 🔻 FI
X5 General	Purpose		•	X11	General Purp	oose 🔻 FI
X6 General Purpose V12 General Purpose					oose 👻 F I	
-X1/X2 Input	Noise Filter					
0.417 🌲	us(Pulse Width)	= 1200 📥 KHz	Cutoff	Freque	ncy @50% du	ity cycle

Step	Operation	Description				
1st	Configure motor	Choose your motor number. Please refer to 2.3 motor number for details.				
2nd	Choose control mode	In control mode, choose "Position" for position mode.				
3rd	Control mode configuration	Choose specified input pulse type, Please refer to 4.8.3 CN2 input signal connections and and 7.2 position mode.				
4th	Set electronic gearing ratio	Please refer to 7.2.5 for electronic gearing ratio settings.				
5th	Set analog signal	Function, or digital input/output functions. In Input/Output functions to setup. Please refer to 4.8.3 CN2 connections, and 7.2 position mode and 7.1 general function settings.				

7.3 Velocity Mode


The velocity control mode is usually used on the applications of precision velocity control. For M2AC servo drives, they are 4 types of velocity control mode: fix speed mode, analog command mode, SCL control mode and multi velocity control mode. Fix speed mode will set motor running at a constant speed. For analog command mode, velocity is controlled by external voltage input. SCL is a unique software commanding tool design by MOONS', it use serial communication command to control the motor. For Multi velocity control mode, the drive uses external input to set up different velocity value. There are up to 8 different velocity value can be set.

Mode	Control Signal	P-12 (CM) Definitions	Description
Analog velocity mode	+10~-10V Analog signal	11	Analog velocity mode, NO run/stop signal, X2 is direction switch.
Analog velocity mode	+10~-10V Analog signal	12	Analog velocity mode, X1 is run/stop signal, X2 is direction switch.
Velocity Mode	Digital input signal	15	Profile velocity mode, after drive is enabled. The drive will run at velocity set by P-22 (JS). NO run/stop signal, X2 is direction switch
Velocity Mode	Digital input signal	16	Profile velocity mode, after drive is enabled. The drive will run at velocity set by P-22 (JS). X1 is run/stop switch, X2 is direction switch
In position error output	Digital output signal	17	Profile velocity mode, NO run/stop signal. X2 is direction switch. X10, X11, X12 is speed selection switch.
In position error output	Digital output signal	18	Profile velocity mode, X1 is run/stop switch. X2 is direction switch. X10, X11, X12 is speed selection switch.

NOTE:We highly recommend using M servo suite software to configure velocity mode.

MOONS'

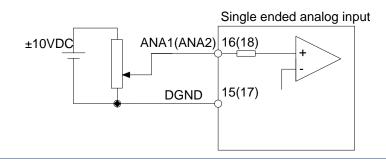
7.3.1 Velocity Mode Connection Diagram

7.3.2 Parameter Settings For Analog Velocity Control Mode

M2 series AC servo drive has 2 12bits analog AD converters. When single ended input signal is used, analog input 1 (ANA1) is used for velocity command, analog input 2 (ANA2) is used for rotating toque command. Differential input via ANA1/ANA2 is also available. In addition, low pass filter, offset and deadband can also be set to the drive.

Parameter	Name	Data Range	Default	Unit	Description
P-12 (CM)	Main control mode	1~8,10~18,21,22	7		Drive's main control mode selection
P-13 (CN)	Secondary control mode	1~8,10~18,21,22	21		Drive's secondary control mode selection
P-50 (AG)	Analog Velocity Gain	-100~100	20	Rps	Motor rotating velocity when analog voltage is 10VDC
P-51 (AN)	Analog Torque Gain	-20~20	1	А	Motor rotating torque when analog voltage is 10VDC
P-52 (AV1)	Analog voltage offset 1	-10~10	0	V	Set analog voltage input 1 offset value
P-53 (AV2)	Analog voltage offset 2	-10~10	0	V	Set analog voltage input 2 offset value
P-54 (AV3)	Analog voltage offset (differential)	-10~10	0	V	Set differential analog voltage input offset value
P-55 (AS)	Analog input type	0~1	0		Analog input type
P-56 (AD1)	Analog deadband 1	0~255	0	mV	Set analog input 1 deadband offset value
P-57 (AD2)	Analog deadband 2	0~255	0	mV	Set analog input 2 deadband offset value
P-58 (AD3)	Analog deadband (differential)	0~255	0	mV	Set analog differential input deadband offset value
P-59 (AF)	Analog input low pass filter	1~15990	500		Analog input noise filter
P-60 (AT)	Analog trigger point	-10~10	0.000	V	
P-61 (FA1)	Define Analog input 1 function	1~3	3		Define Analog input 1 function
P-61 (FA2)	Define Analog input 2 function	1~3	3		Define Analog input 2 function

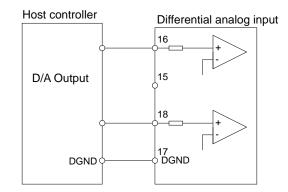
NOTE: This parameter unit in table above might be different from the LED display unit on the drive. Please refer to parameter 8 for details.


7.3.3 Basic Settings For Analog Velocity Control Mode

7.3.3.1 Command Signal For Analog Velocity Mode

In Analog input velocity mode, both single ended and differential signal are acceptable.

A. Single Ended Analog Input


PIN type	Signal	PIN number	er Function	
lanut	ANA1	16	Analog velocity input signal	
Input DGND		15	Analog velocity input signal grounding (digital ground)	

MOONS'

B. Differential Analog Input

PIN type	Signal	PIN number	Function	
	ANA1	16		
Input	ANA2	18	Analog velocity input for differential input signal	
	DGND	15	Analog velocity input signal grounding (digital ground)	

7.3.3.2 Analog Velocity Gain

Analog input voltage range is between -10V~+10V. In analog velocity, it requires to set the velocity value to correspondent input voltage value. It can be set via M servo suite software or P-50 (AG) from the drive.

Parameter	Name	Data Range	Default	Unit	Description
P-50 (AG)	Analog Velocity Gain	-100~100	20	rps	The corresponding motor rotary velocity for 10vdc analog input voltage.

NOTE: if you need to view or set the velocity value on drive' s control panel, please refer to following calculation:

Drive display value= <u>V</u> x 240

✓ is target setting velocity rev/second (rps)

Digital Input Digital Output Analog Input				
Analog Input Filter	Analog Signal Type			
500 A	Differential Single Ended			
Analog Input 1	Analog Input2			
Range ± 10V -	Range ± 10V •			
Velocity Limit 100.000 rev/sec at +10V	Torque Limit 0.65 A at +10V			
Offset 0.000 🚔 V Auto Offset	Offset 0.000 🊔 V Auto Offset			
Deadband 50 👘 mV	Deadband 50 🚔 mV			

7.3.3.3 Analog Input Voltage Offset

In some cases, even when host controller set the analog command to 0V, the servo motor might still rotate slowly. This is caused by voltage bias from the analog voltage supply. M servo suite can automatically offset the analog voltage bias, or customers can manually tuning voltage offset value by change parameter P-52 (AV1) and P-53 (AV2).

Parameter	Name	Data Range	Default	Unit	Description
P-52 (AV1)	Analog input 1 offset	-10~10	0	V	Set Analog input 1 offset
P-53(AV2)	Analog input 2 offset	-10~10	0	V	Set Analog input 2 offset

NOTE: To display play or change the value on the driver' s LED display, please refer to following calculations:

Drive display value= <u>A</u> x 2730

A is target setting offset, unit Voltage (V)

Digital Input Digital Output Analog Input	
Analog Input Filter	Analog Signal Type
500 🔺 Hz	Differential Single Ended
Analog Input 1	Analog Input2
Range ± 10V -	Range ± 10V -
Velocity Limit 100.000 v rev/sec at +10V	Torque Limit 0.65 A at +10V
Offset 0.000 V Auto Offset	Offset 0.000 V Auto Offset
Deadband 50 💌 mV	Deadband 50 💌 mV

7.3.3.4 Analog Input Deadband

In analog control model, even when the input voltage is 0V, it is almost impossible to ensure input voltage is absolute 0V due to external interferences. In some cases, it might cause motor turn slowly in either direction. Therefore, it is highly necessary to setup a reasonable deadband value to prevent this issue.

The analog input deadband can be configured via M servo suite software or parameter P-56 (AD1) directly from the drive's control panel.

Parameter	Name	Data Range	Default	Unit	Description
P-56 (AD1)	Deadband for analog input 1	0~255	0	mV	Set deadband for analog input 1

-Input & Output	
Digital Input Digital Output Analog Input	
Analog Input Filter	Analog Signal Type
500 🔺 Hz	Differential Single Ended
Analog Input 1	Analog Input2
Range ± 10V •	Range ± 10V -
Offset 0.000 V Auto Offset	Offset 0.000 💌 V Auto Offset
Deadband 50 mV	Deadband 50 mV

7.3.3.5 Run/Stop And Direction Signal

In analog velocity mode, external input X1 can set as run/stop switch, X2 can set as direction switch.

Signal Name	PIN	Signa	Function	Description
	X1+ (3)	Closed	Valaaitu mada	Motor running, analog voltage value defines rotary velocity.
X1	X1- (4)	Open	Velocity mode run/stop switch	When switch is open, Motor stops rotary regardless of analog input voltage.
×2	X2+ (5)	Closed	Velocity mode	Change motor rotating direction.
X2	X2+ (5)	Open	run/stop switch	Not in use.

Digital Inpu	Input & Output Digital Input Digital Output							
X1 Ru	un/Stop input (Closed = Run) 🗸	X7	General Purpose 👻					
	ot used. Motor runs continuously un/Stop input (Closed = Run)	X8	General Purpose 👻					
	ervo On when open	X9	General Purpose					
X4 Ge	eneral Purpose 🔹	X10	General Purpose					
X5 Ge	eneral Purpose 🔹	X11	General Purpose					
X6 Ge	eneral Purpose 🔹	X12	General Purpose					

7.3.3.6 Torque Limit

In single ended analog mode, analog input 2 (ANA2) can used to set motor's output torque.

Parameters Setting

Parameter	Name	Data Range	Default value	Unit	Description
P-55 (AS)	Analog type	0~1	0		Analog input type 0: Single ended input 1: Differential input
P-62 (FA2)	Analog 2 function setting	1~3	3		Analog input port 2 function setting: 2: Torque limit setting 3: Not in use
P-51 (AN)	Analog Torque Gain	Based on drive's output ability	1	A	Sets correspondent torque output value against 10VDC input voltage.

NOTE: if you need to view or set this value on drive' s control panel (P-51 (AN)), please refer to following calculation:

Drive display value= $\underline{A} \times 100$

where \underline{A} is target torque output value

-Input & Output	
Digital Input Digital Output Analog Input	
Analog Input Filter	Analog Signal Type
500 🚔 Hz	Differential Single Ended
Analog Input 1	Analog Input2
Range ± 10V •	Range ± 10V •
Speed 100.000 rps at +10V	Current 1.50 Amps at +10V
Offset 0.000 🔷 V Auto Offset	Offset 0.000 🚔 V Auto Offset
Deadband 50 mV	Deadband 50 mV

7.3.3.7 Target Velocity Reach

In velocity mode, when motor's actual velocity and command velocity is the same, "velocity reach" signal can be sent by output Y4 .

The second digit (from right to left) of parameter P-68 (MO) defines the output signal Y4.

Signal Name	PIN	P-68 (MO)	Condition	Function
		D_	Closed	Closed means target speed not reached
		□□B□	Open	Open means reach output speed
Y4	Y4 (43)		Closed	Close means reach output speed
	OUT- (33)		Open	Open means target speed not reached
		□□3□		Constal number signal function disabled
	(defaul			General purpose signal, function disabled.

Parameters Setting

Parameter	Name	Data Range	Default value	Unit	Description
P-85 (VR)	Ripple range setting for velocity reach	0~136	0.000	Rps	The velocity ripple value around the targeted velocity. If the difference between the actual velocity and targeted velocity is within the ripple value. The driver will then define actual torque meets its target torque value.

NOTE: if you need to view or set this value on drive' s control panel (P-83 (VR), please refer to following calculation:

Velocity ripple range = LED display value x 240

Unit for Velocity ripple range is revolution per second (rps)

-Input &	Input & Output								
Digital I	nput Digital Output Analog Input								
Y1	General Purpose 🔹	Y4	General Purpose 🔹						
Y2	General Purpose 🔹	Y5	General Purpose Closed when velocity reach						
Y3	General Purpose 🔹	Y6	Open when velocity reach						

7.3.4 Analog Input Filter

When analog input is used, there might be external interferences that affect the accuracy of the analog input voltage. In some cases will cause the motor to turn unexpectedly, or unstable torque output. Therefore, analog input filter is recommended. It is designed as a digital low pass filter; reasonable filter frequency can significantly improve the motor performance.

To setup the analog input filter directly from the drive, please refer to the following calculation

Display analog input value =
$$\frac{72090}{\frac{1400}{x} + 2.2}$$

Where X is input filter frequency, unit Hz

Setting Via Software

In drive configuration page-----input/output analog input 1/2 settings to setup

-Input & Output	
Digital Input Digital Output Analog Input	
Analog Input Filter	Analog Signal Type
500 🚔 Hz	Differential Single Ended
Analog Input 1	Analog Input2
Range = 10V -	Range ± 10V -
Speed 100.000 🚔 rps at +10V	Current 1.50 Amps at +10V
Offset 0.000 🚔 V Auto Offset	Offset 0.000 📥 V Auto Offset
Deadband 50 🚔 mV	Deadband 50 mV

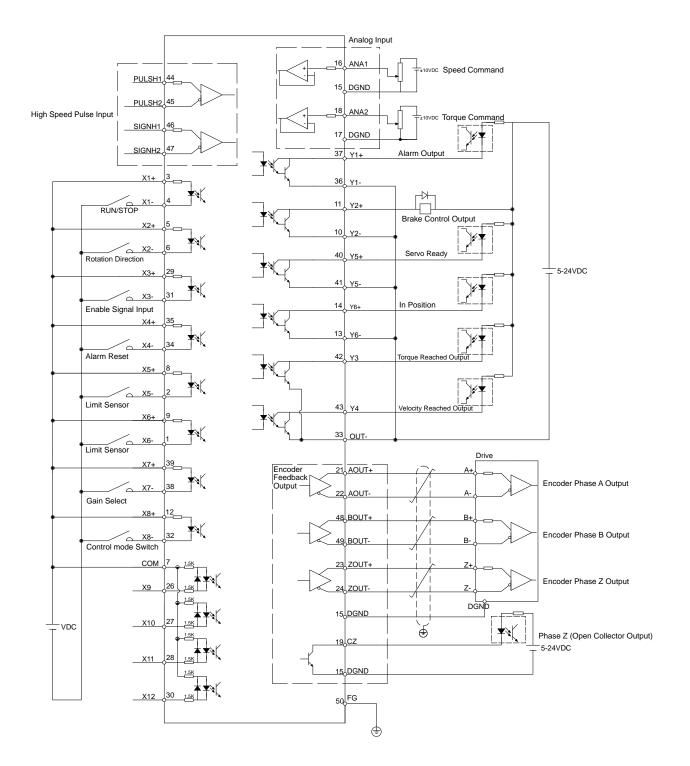
7.3.5 Software Configuration For Analog Velocity Mode

The M servo suite can help you easily configure the drive and motor, as well as tuning the parameters.

Motor Information		
		Control Mode
SM0601AE2 Config Speed	Limit 10.000 rps	Main Mode Velocity (IO Controlled) Go to
Reverse motor rotating direction Acc/De	ec Limit 1500.000 rps/s	2nd Mode 21: Point to Point Pos. Go to
Control Mode Settings		
Velocity Control Type	Accel	Decel
Speed only O Position over time	100.000 🚔	rps/s 👻 100.000 🚔 rps/s 👻
Velocity Control by		
◎ Fix speed at 2.000	*	$\overline{2}$
Change Speed By X10~X12		J
Differential Analog		
Single-Ended Analog Input 1		
Position Error Fault 💿 2000 🚔 Count	ts 🔘 Not used	Jerk Filter 💿 🛛 500 🍧 Hz 🔘 Not used
Input & Output		Jerk Filter 💿 🗾 500 📥 Hz 🔘 Not used
Input & Output Digital Input Digital Output Analog Input	Analog Sign	
Input & Output Digital Input Digital Output Analog Input Filter	Analog Sign	nal Type al Single Ended
Input & Output Digital Input Digital Output Analog Input Analog Input Filter 500 + Hz	Analog Sign	nal Type al Single Ended
Input & Output Digital Input Digital Output Analog Input Analog Input Filter 500 + Hz Analog Input 1 Range ± 10V •	Analog Sign Analog Sign Differentia Analog Inpu Range	hal Type al $$ Single Ended ut2 $\underbrace{\pm 10V}$
Input & Output Digital Input Digital Output Analog Input Analog Input Filter 500 Hz Analog Input 1 Range ± 10V V Velocity 20.000 rev/sec at	Analog Sign Tifferentia Analog Inpu Range t +10V Torque Li	hal Type al (a) Single Ended ut2 $\pm 10V \checkmark$ mit (0.65 (a) A at +10V
Input & Output Digital Input Digital Output Analog Input Analog Input Filter 500 Hz Analog Input 1 Range ± 10V v Velocity 20.000 rev/sec at	Analog Sign Analog Sign Differentia Analog Inpu Range	hal Type al in Single Ended ut2 ± 10V ▼ 4

Step	Operation	Description
1st	Configure motor	choose your motor number. Please refer to 2.3 motor number for details
2nd	Choose control mode	In control mode, choose "velocity" for Velocity mode
3rd	Control mode configuration	choose specified velocity analog type, Please refer to 7.3 analog velocity mode and 7.6 command velocity.
4th	Set analog signal	function, or digital input/output functions in Input/Output functions to setup. Please refer to 4.8.3 CN2 connections, and 7.3 velocity mode and 7.1 general function settings.

7.4 Torque Mode


The torque mode is usually used on the applications of precision torque control. For M2 series AC servo drives, they are 2 types of torque control mode: analog input torque mode and SCL command mode. For analog command mode, torque is controlled by external voltage input. SCL is a unique software commanding tool design by MOONS', it use serial communication command to control the motor.

Mode	Control Signal	P-12 (CM) Definition	Description
Analog input torque mode	+10~-10V Analog signal	2	Analog torque mode: No run/stop signal, No direction signal
Analog input torque mode	+10~-10V Analog signal	5	Analog torque mode: X1 for run/stop signal, No direction signal
Analog input torque mode	+10~-10V Analog signal	3	Analog torque mode: no run/stop signal; X2 is closed, motor will change its current rotary direction.
Analog input torque mode	+10~-10V Analog signal	4	Analog torque mode: no run/stop signal; X2 is open, motor will change its current rotary direction.
Analog input torque mode	+10~-10V Analog signal	6	Analog torque mode: X1 for run/stop signal; X2 is open, motor will change its current rotary direction.
Analog input torque mode	+10~-10V Analog signal	8	Analog torque mode: X1 for run/stop signal; X2 is close, motor will change its current rotary direction.
SCL torque control mode	SCL command	1	

MOONS'

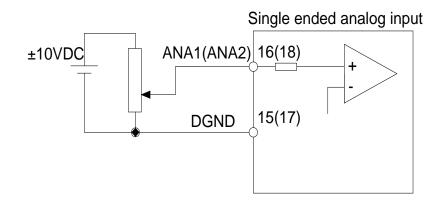
7.4.1 Analog Torque Mode Connection Diagram

7.4.2 Parameters For Analog Torque Mode

M2 series AC servo drive has two 12bits analog AD converters. When single end input signal is used, analog input 1 (ANA1) is used for velocity command, analog input 2 (ANA2) is used for rotating toque command. Differential input via ANA1/ANA2 is also available. In addition, low pass filter, offset and deadband can also be set to the drive.

Parameter	Name	Data Range	Default value	Unit	Description
P-12 (CM)	Main control mode	1~8,10~18,21,22	7		Drive's main control mode selection
P-13 (CN)	Secondary control mode	1~8,10~18,21,22	21		Drive's secondary control mode selection
P-50 (AG)	Analog velocity setting	-100~100	20	Rps	Motor rotating velocity when analog voltage is 10VDC
P-51 (AN)	Analog torque setting	-20~20	1	A	Motor rotating torque when analog voltage is 10VDC
P-52 (AV1)	Analog voltage offset 1	-10~10	0	V	Set analog voltage input 1 offset value
P-53 (AV2)	Analog voltage offset 2	-10~10	0	V	Set analog voltage input 2 offset value
P-54 (AV3)	Analog voltage offset (differential)	-10~10	0	V	Set analog differential voltage input offset value
P-55 (AS)	Analog input type	0~1	0		Set Analog input type
P-56 (AD1)	Analog deadband 1	0~255	0	mV	Set analog deadband offset 1 value
P-57 (AD2)	Analog deadband 2	0~255	0	mV	Set analog deadband offset 2 value
P-58 (AD3)	Analog deadband (differential)	0~255	0	mV	Set analog differential deadband offset value
P-59 (AF)	Analog input low pass filter	1~15990	500		Analog input noise filter
P-60 (AT)	Analog trigger point	-10~10	0	V	
P-61 (FA1)	Define Analog value 1	1~3	3		Set Analog input 1 function
P-61 (FA2)	Define Analog value 2	1~3	3		Set Analog input 2 function

NOTE: This parameter unit in table above might be different from the LED display unit on the drive. Please refer to parameter 9 for details

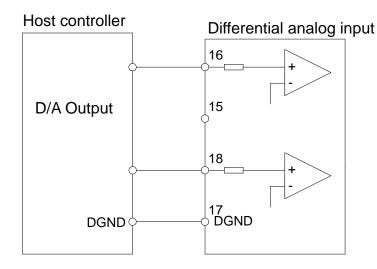

7.4.3 Basic Settings For Analog Torque Mode

7.4.3.1 Command Signal For Analog Torque Mode

In Analog input torque mode, both single ended and differential signal are acceptable.

A. Single Eneded Analog Input

Pin Type	Signal Name	Connector pin allocation	Function
linnes	ANA2	18	Analog torque input signal
Input	DGND	17	Analog torque input signal grounding



B. Differential Analog Input

Pin Type	Signal Name	Connector pin allocation	Function
ANA1 16		16	Angles termus insut for differential insut sizes.
Input	ANA2	18	Analog torque input for differential input signal
	DGND	15	Analog torque input signal grounding

7.4.3.2 Analog Torque Gain

Analog input voltage range is between -10V~+10V. In analog torque mode, it requires to set the torque value to its correspondent voltage input value. It can be configured via M servo suite software or parameter P-51 (AN) directly from the drive.

Parameter	Name	Data Range	Default value	Unit	Description
P-51 (AN)	Analog Torque Gain	-20~20	depend on current motor	А	Set the analog torque value corresponding to 10VDC.

NOTE: if you need to view or set this value on drive' s control panel, please refer to following calculation:

Drive display value= $\underline{a} \times 100$

Where is target torque value unit *a* amps

Input & Output	
Digital Input Digital Output Analog Input	
Analog Input Filter	Analog Signal Type
500 🚔 Hz	Differential Single Ended
Analog Input 1	Analog Input2
Range ± 10V •	Range ± 10V -
	Current 1.50 Amps at +10V
Offset 0.000 🚽 V Auto Offset	Offset 0.000 📥 V Auto Offset
Deadband 50 🚔 mV	Deadband 50 mV

7.4.3.3 Analog Input Offset

In some cases, even when host controller set the analog command to 0V, the servo motor might still rotate slowly. This is caused by voltage bias from the analog device. M servo suite can automatically offset the analog voltage bias, or customers can manually tuning the offset by change parameter P-53 (AV2).

Parameter	Name	Data Range	Default value	Unit	Description
P-53 (AV2)	Analog input 2 offset	-10~10	0	V	Set Analog input 2 offset

NOTE: if you need to view or set the offset voltage value on drive' s control panel, please refer to following calculation:

Drive display value= <u>A</u> x 2730

Where **A** is target setting offset, unit Voltage (V)

Setting Via Software

_Input & Output	
Digital Input Digital Output Analog Input	
Analog Input Filter	Analog Signal Type
500 🚔 Hz	Differential Single Ended Single 2
Analog Input 1	Analog Input2
Range ± 10V -	Range ± 10V -
	Current 1.50 Amps at +10V
Offset 0.000 V Auto Offset	Offset 0.000 🚔 V Auto Offset
Deadband 50 🐳 mV	Deadband 50 💭 mV

7.4.3.4 Analog Deadband

In analog control mode, even when the input voltage is 0V, it is impossible to ensure input voltage is absolute 0V due to external interferences. In some cases, it might case motor turn slowly in either direction. Therefore, it is highly necessary to setup a reasonable deadband value to prevent this issue.

It can be set by M servo suite software and P-57 (AD2) directly from the drive.

Parameter	Name	Data Range	Default value	Unit	Description
P-57 (AD2)	Deadband for analog input 2	0~255	0	mV	Set deadband for analog input 2

-Input & Output	
Digital Input Digital Output Analog Input	
Analog Input Filter	Analog Signal Type
500 🚽 Hz	Differential Single Ended
Analog Input 1	Analog Input2
Range ± 10V -	Range ± 10V •
	Current 1.50 Amps at +10V
Offset 0.000 🚖 V Auto Offset	Offset 0.000 🛓 V Auto Offset
Deadband 50 mV	Deadband 50 mV

7.4.3.5 Run/Stop and Direction signal

In analog torque mode, external input X1 can set as run/stop switch, X2 can set as direction switch.

Signal Name	PIN	Condition	Function	Description
X1	X1+ (3)	Closed	Torque mode run/	When motor running, analog voltage defines motor output torque
	X1+ (4)	Open	stop switch	In this mode, even with analog input, motor will not turn
×2	X2+ (5)	Closed	Torque mode	Change current motor rotary direction
×2	X2 X2+ (5) Open direction switch	Function not used		

Setting Via Software

-Input &	Output		
Digital I	nput Digital Output Analog Input		
X1	Run/Stop input (Closed = Run)	X7	General Purpose 🔹
X2	Direction is CW when closed 🔹	X8	General Purpose 🔹
X3	Servo On when open 🔹	X9	General Purpose
X4	General Purpose 🔹	X10	General Purpose FI
X5	General Purpose 🔹	X11	General Purpose
X6	General Purpose 🔹	X12	General Purpose

7.4.3.6 Velocity Limit

In analog torque mode, if no limit is set on motor's rotatory velocity. If load inertial is small, motor's rotary velocity will be very fast, it might cause damages or accidents to the machinery. Therefore, it is very important to set velocity limit.

The velocity limit for torque mode can be set via analog input 1 (ANA1).

Parameters Setting

Parameter	Name	Data Range	Default value	Unit	Description
P-55 (AS)	Analog type	0~1	0		analog input type: 0: single ended input 1:differential input
P-61 (FA1)	Analog 2 function setting	1~3	3		analog input 1 function type: 1: velocity limit 3: not in use
P-50 (AG)	Analog Velocity Gain	-100~100	10	Rps	Sets correspondent velocity value against 10VDC input voltage.

Digital Input Digital Output Analog Input	
Analog Input Filter	Analog Signal Type
500 🚔 Hz	 Differential Single Ended
Analog Input 1	Analog Input2
Range ± 10V -	Range 🛨 10V 👻
Speed 100.000 rps at +10V	Current 1.50 Amps at +10V
Offset 0.000 V Auto Offset	Offset 0.000 🜩 V Auto Offset
Deadband 50 🚔 mV	Deadband 50 mV

7.4.3.7 Torque Reach

In torque mode, when motor actual torque and command torque is the same, "torque reached" output signal can be sent via Y3 output.

The first digit (from right to left) of parameter P-68 (MO) from the drive defines the output signal Y4.

Signal Name	PIN	P-67 (MO)	Condition	Function
		0	Closed	Closed means target torque not reached
		0009	Open	Open means reach output torque
Y3	Y3 (42)	0	Closed	Close means reach output torque
	OUT- (33)	8000	Open	Open means target torque not reached
		0030		General purpose signal, function disabled.
		(default)		General purpose signal, runction disabled.

Parameters Setting

Parameter	Name	Data Range	Default value	Unit	Description
P-87 (TV)	Torque within ripple range, when torque reach function in use.	0.00~3.00	0.00	A	When actual torque output and command torque is same, and within the velocity ripple range. There will be torque reach output signal.

NOTE: if you need to view or set this value on drive' s control panel P-86 (TV), please refer to following calculation:

LED display value = Torque ripple range X 100

Unit for torque ripple range is A (amps)

-Input &	Input & Output					
Digital I	Input Digital Output Analog Input					
Y1	General Purpose 🔹	Y4	General Purpose 🔹			
Y2	General Purpose 🔹	Y5	General Purpose 🔹			
Y3	Closed to torque limit 🔹	Y6	General Purpose 🗸 🗸			
Torq	ue Reach Condition Setting					
Curre	ent Ripple Range 0.00 🛓 A					

7.4.4 Software Configuration For Analog Torque Mode

The M servo suite can help you easily configured the drive and motor, as well as tuning parameters.

Notor Information			Control Mo	ode	2011/20
SM0601AE2 Config	Speed Limit	10.000 rps	Main Mode	Torque (IO Controlled)) Go t
Reverse motor rotating direction	Acc/Dec Limit	1500.000 rps/s	2nd Mode	21: Point to Point Pos	. Go t
Control Mode Settings					
Torque Control by					
 Differential Analog Single-Ended Analog Input 2 					
Single-Ended Analog Input 2					
					(3)
					\smile
	-				
Position Error Fault 💿 2000 🍝	Counts 🔘 No	it used	Jerk Filt	er 💿 🚺 🛉 H	łz 💿 Not used
	Counts 🔘 No	rt used	Jerk Filt	er 💿 500 🔺 H	łz 🔘 Not used
nput & Output		it used	Jerk Filt	er 🖲 500 🔺 H	łz 💿 Not used
nput & Output Digital Input Digital Output Analog	Counts () No			er 💿 🗾 🕂 H	łz 💿 Not used
nput & Output Digital Input Digital Output Analog Analog Input Filter		Analog Signa	l Type		Iz 💿 Not used
nput & Output Digital Input Digital Output Analog			l Type		Iz 💿 Not used
nput & Output Digital Input Digital Output Analog Analog Input Filter		Analog Signa	I l Type		łz 🔘 Not used
nput & Output Digital Input Digital Output Analog Analog Input Filter 500 + Hz		Analog Signa	I l Type		Az O Not used
nput & Output Digital Input Digital Output Analog Analog Input Filter 500 Hz Analog Input Range ± 10V		Analog Signa Differential	Il Type Single End 2 ± 10V		Az Not used
nput & Output Digital Input Digital Output Analog Analog Input Filter 500 Hz Analog Input Range ± 10V	g Input	Analog Signa Differential Analog Input Range Current	Il Type Single End 2 ± 10V 0.65	ded	Iz Not used

Step	Operation	Description
1st	Configure motor	Choose your motor number. Please refer to 2.3 Motor number for details.
2nd	Choose control mode	In control mode, choose "torque" for torque mode.
3rd	Control mode configuration	Choose specified torque analog type, please refer to 7.4 Analog torque mode.
4th	Set analog signal function, or digital input/output functions	In Input/Output functions to setup. Please refer to 4.8.3 CN2 connections, and 7.4 torque mode and 7.1 general function settings.

7.5 Position Table Mode Instruction

Position table mode allows **Point-to-Point linear motion** and **Rotary motion** without any external pulse input. Instead, position table mode uses Input port X7~X12 to configuredifferent positions command. Input X4 is the trigger for motion.

I. Mo	tor Infor	rmation -					2. Control	Mode		
		0	onfig	Speed Limit	80 rps		Main Mode	Position Table	*	Got
Rever	rse motor	r rotating d	irection	Acc/Dec Limit	3000 rps	/s				
Contr	rol Mode	e Settings	<u></u>				<u></u>			
inear	Rotary									
Param	neter Sett	tings				S	imulate		Run	
Positio	on Type	Absolute	Pos.	Homing Method	1 Edit	P	oint 0 🔹 O	offset 0 🗧 Count	s St	art
Homin	a Setting	s Speed:5	.000 rp	s Accel:100.00	0 rps/s Decel:	IC	Homing G	o Set Offset Stop	St	OD
	-									
120	1 2	3 4 5	6 7	8 9 10 11	12 13 14 15	16 17	18 19 20 21	1 22 23 24 25 26 27 20	8 29 30	31
10000	n Error Fau		0000	Counts 🔿	Not used		Jerk Fil	ter 🖲 5000 🗼 Hz	O Not u	ised
. Inpu	it & Outp			Counts 🔿	Not used		Jerk Filt	ter 🖲 5000 🕂 Hz	O Not u	ised
. Inpu	it & Outp	putigital Outpu		Counts 🔿	Not used	X7	Jerk Fil	ter 🖲 5000 🔹 Hz	() Not u	
. Inpu Digital I	Input Di Homing	putigital Outpu		Counts 🔘		X7 X8		ter 🖲 🔽 5000 🗜 Hz	O Not u	
. Inpu Digital I X1	Input Di Homing Homing	igital Outpu Sensor		Counts 🔿	¥		M Input	ter 🖲 5000 🕂 Hz	○ Not u	
. Inpu Digital I X1 X2	Input Di Homing Homing General	igital Outpu Sensor Trigger		Counts ()	> >	X8	M Input M Input	ter 🖲 5000 ᅷ Hz		FI
. Inpu Digital I X1 X2 X3	Input Di Homing Homing General Position	igital Outpu Sensor Trigger Purpose		Counts ()	> > >	X8 X9	M Input M Input M Input	ter 🖲 5000 ᡫ Hz	~	FI
. Inpu Digital I X1 X2 X3 X4	Input Di Homing Homing General Position General	out igital Outpu Sensor Trigger Purpose Trigger		Counts O	> > > >	X8 X9 X10	M Input M Input M Input M Input		~	FI FI FI FI

Figure 7.5.1 Position table mode

NOTE: Only -S type M2 series servo drive supports position table mode

7.5.1 Linear motion

Linear motion for position table mode can set up to 63 positions (not include homing position). Detailed software setting as follows:

7.5.1.1 Linear Motion Software Configuration

- 1) Open M Servo Suite, connect the driver with software(refer to software manual for details)
- 2) Select "position table" control mode from"step1: configuration"-----"2. Control mode"

As shown in Figure 7.5.2 Select Position Table

Main Mode	Position Table	~	Go to
Iain Mode	Position Table	~	Go

Figure 7.5.2 Select Position Table

3) Select linear motion from "3. Control mode setting" as show in Figure 7.5.3Linear motion setting.

arame	eter	Settin	gs										Sin	nulate							Ru	n
osition	n Ty	pe	Ab	solut	e Po	s. H	omin	ng Me	thoo	1		Edit	Poi	int 0	•	Offset		0	-	Counts		Start
Homing Settings			Speed:5.000 rps Accel:100.000 rps/s Decel:10						F	Homing Go Set Offset Stop					-	Stop						
-	1	2 3	4	5	6	7	1 9	10	μ	12 1	3 14	15 16	17	18 19	20	21 22	23	24 2	5 26	27 28	29 30	31
Ť																						

Figure 7.5.3Linear motion setting

4) Click edit for detailed motion configurations, as shown in Figure 7.5.4 Linear motion configuration.

Basic Set	tings									Posil	tion De	finition								
Point Cou	nts	31							~			100		Unit	Velocity	rps, Ac	cel/Decel	rev/s/s,	Position:	Counts
Position T	vpe	Abs	olute Po	05.					~	PN	(4(X11)	M3(X10)	M2(X9)	M1(X8)	M0(X7)	Velocity	Accel	Decel	Position	1
Position U	init (ounts	01	hea	10.000		: mm/r	ww	1	0	0	0	0	1	10.000	10.000	10.000	0	
			ounce	~.	cou				-	2	0	0	0	1	0	10.000	10.000	10.000	2000	
Homing S	Settings									3	0	0	0	1	1	10.000	10.000	10.000	4000	
Homing M	lethod	Ноп	ning Me	thod	1				~	4	0	0	1	0	0	10.000	10.000	10.000	6000	
				HON	ING MODE	#1				5	0	0	1	0	1	10.000	10.000	10.000	8000	
		11					11			6	0	0	1	1	0	10.000	10.000	10.000	10000	-
										7	0	0	1	1	1	10.000	10.000	10.000	12000	_
	•	**	-				Ħ	cow		8	0	1	0	0	0	10.000	10.000	10.000	14000	_
		Ħ								9	0	1	0	0	1	10.000	10.000	10.000	16000	_
		Ħ								10	0	1	0	1	0	10.000	10.000	10.000	18000	_
		#								11	0	1	0	1	1	10.000	10.000	10.000	20000	_
	Pulse	L	1		1 1		1	1		12	0	1	1	0	0	10.000	10.000	10.000	22000	
	Home	T					1			13	0	1	1	0	1	10.000	10.000	10.000	24000	_
	Switch	Ľ	nused							14	0	1	1	1	0	10.000	10.000	10.000	26000	_
-	Switch	E						1		15	0	1	1	1	1	10.000	10.000	10.000	28000	_
	on Linit	1.	bused				Π	1		16	1	0	0	0	0	10.000	10.000	10.000	30000	
	Switch	H					H	+		17	1	0	0	0	1	10.000	10.000	10.000	32000	_
							-	11		18	1	0	0	1	0	10.000	10.000	10.000	34000	_
Homes to	the first	ind	ex CCV	/ afte	ar the CW lin	nit switc	n is	reached.	~	19	1	0	0	1	1	10.000	10.000	10.000	36000	-
										20	1	0	1	0	0	10.000	10.000	10.000	38000	
									*	21	1	0	1	0	1	10.000	10.000	10.000	40000	_
Search I	Homing				Search	Index				22	1	0	1	-	0	10.000	10.000	10.000	42000	_
Velocity	5.000	÷	rps	*	Velocity	1.000	÷	rps	~	23	1	0	1	1	1	10.000	10.000	10.000	44000	_
Accel	100.000	-	rps/s	v	Accel	20.000	-	rps/s	~	24	1	1	0	0		10.000	10.000	10.000	46000	
	100.000					20.000				25		1	0		1	10.000	10.000	10.000	50000	_
Decel	100.000	•	rps/s	*	Decel	20.000		rps/s	~	20	1	1	0	1	1	10.000	10.000	10.000	52000	
Homing O	Iffset		0	-	Counts					28	1		1	0	0	10.000	10.000	10.000	54000	
				-						20					•	10.000	10.000	10.000	54000	-

Figure 7.5.4Linear motion configuration

7.5.1.2 Basic Configuration

Point Counts: Select the number of position points. For M series servo drives, there are four selections: 7. 15. 31. 63number of position points.

Position type: There are two types for point-to-point motion: Relative position; and absolutepositon.

Example shown in Figure 7.5.5Relative position VS Absolute positon:

Set P1position for 5revs, P2 position for 10revs, the difference between Relative position and absolute position are as shown in below:

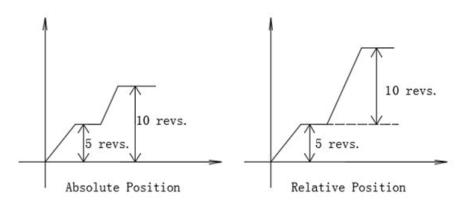


Figure 7.5.5Relative position VS Absolute positon

Position Unit Set position point Units.

Counts: It represents the number pulse from encoder output. For position table mode, one motor revolution is 10000 pulse counts.

Lead: It represents the distance for one motor revolution. Unit mm/rev.

7.5.1.3 Homing settings:

Homing Method: There are 12 types to homing available.

Search homing: This feature sets the velocity, acceleration and deceleration for search homing switch.

Search Index: This feature sets the velocity, acceleration and deceleration for search motor encoder index signal after the homing switch is reached.

Homing Offset: After homing process is finished, this sets the offset value from the homing position.

7.5.1.4 Print

Click on "Print" to print out the configurations table, as shown in Figure 7.5.6 Print Position Table configuration below:

Position Table Configuration. @Shanghai AMP & MOONS' Automation Co., Ltd. Linear Mode Point Counts: 31 Position Type: Absolute Pos. Homing Method: Homing Method 1 Search Homing Velocity: 5 rev/s Accel: 100 rev/s/s Decel: 100 rev/s/s Search Index Velocity: 5 rev/s Accel: 100 rev/s/s Decel: 100 rev/s/s Homing Offset: 0

Position Definition

				Unit	Velocity:	rps, Accel	Decel: rev	/s/s, Positio	on:
P	M4(X11)	M3(X10)	M2(X9)	M1(X8)	M0(X7)	Velocity	Accel	Decel	Position
1	0	0	0	0	1	10.000	10.000	10.000	0
2	0	0	0	1	0	10.000	10.000	10.000	2000
3	0	0	0	1	1	10.000	10.000	10.000	4000
4	0	0	1	0	0	10.000	10.000	10.000	6000
5	0	0	1	0	1	10.000	10.000	10.000	8000
6	0	0	1	1	0	10.000	10.000	10.000	10000
7	0	0	1	1	1	10.000	10.000	10.000	12000
8	0	1	0	0	0	10.000	10.000	10.000	14000
9	0	1	0	0	1	10.000	10.000	10.000	16000
10	0	1	0	1	0	10.000	10.000	10.000	18000
11	0	1	0	1	1	10.000	10.000	10.000	20000
12	0	1	1	0	0	10.000	10.000	10.000	22000
13	0	1	1	0	1	10.000	10.000	10.000	24000
14	0	1	1	1	0	10.000	10.000	10.000	26000
40	~	4			-	40 000	40.000	10 000	00000

Figure 7.5.6 Print Position Table configuration

7.5.1.5 Position Definition

Positon Definition shows the detailed configurations for each position point, including velocity, acceleration and deceleration, position. In this table, it also shows the input condition (X7~X12) totrigger each position.

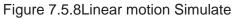
PO	sition De	nnition					Ur	nit Velo	city: rps, A	ccel/Decel:
P	M5(X12)	M4(X11)	M3(X10)	M2(X9)	M1(X8)	M0(X7)	Velocity	Accel	Decel	Position
1	0	0	0	0	0	1	10.000	10.000	10.000	0.000
2	0	0	0	0	1	0	10.000	10.000	10.000	2.000
3	0	0	0	0	1	1	10.000	10.000	10.000	4.000
4	0	0	0	1	0	0	10.000	10.000	10.000	6.000
5	0	0	0	1	0	1	10.000	10.000	10.000	8.000
6	0	0	0	1	1	0	10.000	10.000	10.000	10.000
7	0	0	0	1	1	1	10.000	10.000	10.000	12.000
8	0	0	1	0	0	0	10.000	100.000	100.000	14000.000
9	0	0	1	0	0	1	10.000	100.000	100.000	16000.000
10	0	0	1	0	1	0	10.000	100.000	100.000	18000.000
11	0	0	1	0	1	1	10.000	100.000	100.000	20000.000
12	0	0	1	1	0	0	10.000	100.000	100.000	22000.000
13	0	0	1	1	0	1	10.000	100.000	100.000	24000.000
14	0	0	1	1	1	0	10.000	100.000	100.000	26000.000
15	0	0	1	1	1	1	10.000	100.000	100.000	28000.000
16	0	1	0	0	0	0	10.000	100.000	100.000	30000.000
17	0	1	0	0	0	1	10.000	100.000	100.000	32000.000
18	0	1	0	0	1	0	10.000	100.000	100.000	34000.000
19	0	1	0	0	1	1	10.000	100.000	100.000	36000.000
20	0	1	0	1	0	0	10.000	100.000	100.000	38000.000
21	0	1	0	1	0	1	10.000	100.000	100.000	40000.000
22	0	1	0	1	1	0	10.000	100.000	100.000	42000.000
23	0	1	0	1	1	1	10.000	100.000	100.000	44000.000
24	0	1	1	0	0	0	10.000	100.000	100.000	46000.000
25	0	1	1	0	0	1	10.000	100.000	100.000	48000.000
26	0	1	1	0	1	0	10.000	100.000	100.000	50000.000

Figure 7.5.7Position definition table

M0(X7) ~ M5(X12)status: '0'means input is closed; '1'means input is Open.

After the homing process, motor will move to corresponding position which selected by input $MO(X7) \sim M5(X12)$, and triggered by X4 (position trigger)when it changesfrom 'open' to 'close'.

5) Click 'OK' to finish linear mode settings


6) Click 'Download to Drive' the set the drive

7) Close the software turn off the power, and restart both drive and software for running position table mode.

7.5.1.6 Simulate

After the configurationprocess, simulate function can verify the settings simulate the motions.

Parameter Settin	gs			Simulate				Run
Position Type	Absolute Pos.	Homing Method	1 Edit	Point 0 🌲	Offset	0	Counts	Start
loming Settings	Speed:5.000 r	rps Accel:100.000	rps/s Decel:10	Homing	Go	Set Offset	Stop	Stop
	1	2	3	4	5	6	7	_

Homing: Click 'homing' to start homing process.

Go: Set the position point by changing the value in point box, and click 'go' button to start the motion. In Figure 7.5.8Linear motion Simulate, green arrow in box ② shows the load position in real time.

Set Offset: Confirm offset position, change this value will change the position in position table

Stop: Stop current motion immediately

7.5.1.7 Linear motion input definition

Input	Function	Description
X1	Homing Sensor	Homing sensor switch
X2	Homing Trigger	Triggering homing process
	General Purpose	Generalpurpose
X3	Servo On When Closed	Enable the motor drive when input closed
	Servo On When Open	Enable the motor drive when input open
X4	PositionTrigger	It is a trigger signal. When Input X4 changes from open to close, motor will move to the position selected by switch M0(X7) ~ M5(X12)
	General Purpose	Generalpurpose
X5	CW Limit Sensor	Set CW position limit, please refer to M2 user manual chapter 7.1.3, CW/CCW limit for more details
	General Purpose	Generalpurpose
X6	CCW Limit Sensor	Set CCW position limit, please refer to M2 user manual chapter 7.1.3, CW/CCW limit for more details
X7~X12	MInput	Position point input

7.5.2 Rotary motion

Rotary motion is highly suitable for dividing plate applications, system gearing reduction ratio can also be set based on the application. Settings such as number of division per revolution, motion profiles and homing profiles can also be set.

After the configuration. Input X4 is the motion trigger, the load will rotate according to set direction. Each trigger signal will turn the load by one single rotary point based on the settings.

7.5.2.1 Rotary motion software configuration

Parameter Settings Reduction Ratio 1:30 Division Ratio 24	Edit	
Simulate Point 1 Offset 0 Counts	Run Start	
Homing Go Set Offset Stop	Stop	

Edit: Click on 'Edit" to enter detailed configuration page, as shown in Figure 7.5.9Detail configuration for rotary motion below

Basic Settings				_					
Reduction Ratio		30		Division	Ratio		24		\$
Rotary Direction	• cw		○ ccw	Rotary	Velocity	5.000	•	rps	~
Rotary Accel	100.000	-	rps/s	v Rotary	Decel	100.000	•	rps/s	
Homing Direction	• cw		O ccw	Homing	Velocity	1.000		rps	~
Homing Accel	10.000 ‡		rps/s	 Homing 	Decel	10.000	•	rps/s	
Sensor State	I low Act		O High Acti	10			-		
			O mgn Aca						
Offset Definatio							_	_	_
Point	Offset			Point		Offset			
1	0			13		0			
2	0	1		14		0			
3	0	÷		15		0			
4	0			16		0			
5	0			17		0			
6	0			18		0			
7	0			19	19				
8	0			20	20				
9	0			21		0			
10	0			22		0			
11	0	1		23		0			
	0			24		0			

Figure 7.5.9Detail configuration for rotary motion

Reduction ratio: Set mechanical gear box ratio

Division Ratio: Divide one revolution into numbers of point with equal distance

Rotary direction: Select the direction for rotary motion

Rotary velocity, rotary acceleration, rotary deceleration: Set motor rotary velocity, rotary acceleration, and rotary deceleration values

NOTE: the rotary are set based on Motor velocity/acceleration/deceleration. For actual system speed, please refer to ratio calculation shown below:

System speed = Motor Speed × Reduction ratio

Homing direction: Set homing direction

Homing velocity, Homing acceleration, Homing deceleration: To set motor homing velocity, homing acceleration, and homing deceleration values

NOTE: the rotary are set based on Motor velocity/acceleration/deceleration. For actual system speed, please refer to ratio calculation shown below:

System speed = Motor Speed × Reduction ratio

Sensor State: Set homing sensor type: low active, high active

Offset definition: Set position offset for each position point, for minor tunings.

7.5.2.2 Rotary motion input definition

Input	Function	Description
X1	Homing Sensor	Homing sensor switch
X2	Homing Trigger	Triggering homing process
X3	General Purpose	Generalpurpose
	Servo On When Closed	Enable the motor drive when input closed
	Servo On When Open	Enable the motor drive when input open
X4	Position Trigger	It is a trigger signal. When Input X4 change from open to close, the load will move one single rotary point according to the position configuration

8. Parameters and Functions

8.1 Parameter Category

M2 series AC servo drive has 4 modes.

type	Function	Example	Details
nstatus monitoring setting	Select LED monitoring status type	n00 iu.	5.4 status monitoring selection mode
FFunction mode setting	Select drive function to execute	FO IC J.	5.5 function mode control
PParameter setting mode	Selection and editing the parameter on the drive	P006P	5.6 parameter setting mode
rwarning&fault display	Display the warning or fault message When they occurr	n0 lot	5.8 warning and fault display

8.2 Parameter List

parameter number	Туре	SCL command	LED display	Function	Default value	Unit
P00	PID	KP	P006P	Global gain 1	10000	
P01	PID	KG	P0 166	Global gain 2	12000	
P02	PID	KF	77504	Proportion gain	6000	
P03	PID	KD	P036d	Deriv gain	2500	
P04	PID	KV	P04hu	Damping gain	8000	
P05	PID	KI	P056 .	Integrator gain	500	
P06	PID	KK	P0666	Inertia Feedforward Constant	800	
P07	PID	KJ	P076J	Jerk Filter Frequency	5000	
P08	PID	VP	P08uP	Velocity Loop Proportional Gain	15000	
P09	PID	VI	P09u 1	Velocity Loop Integral Gain	600	
P10	PID	KE	P 106E	Deriv Filter factor	15000	
P11	PID	KC	P 16[PID Filter factor	25000	
P12	Control mode	СМ	N 13C1 9	Main control mode	7	
P13	Control mode	CN	P 13[n	Secondary control mode	21	
P14	Control mode	PM	P IYPN	Power-up mode	2	
P15	Control mode	JM	PISJN	Jog mode	1	
P16	Current config	GC	P 16GC	Current Command of Torque Mode	0	0.01A
P17	Current config	СС		Rated Maximum current	0.5 *	А
P18	Current config	СР	P 18[P	Peak current	1.5 *	А
P20	Profile	VM	N_029	Maximum velocity	60.000	rps
P21	Profile	AM	181 59	Maximum acceleration/deceleration	3000	rps/s
P22	Profile	JS	EF 223	Jog speed	10.000	rps
P23	Profile	JA	RLES9	Jog acceleration	100.00	rps/s
P24	Profile	JL	P24JL	Jog deceleration	100	rps/s
P25	Profile	VE	۲۲۵۵ ۲	Point to point Velocity	5	rps

				1	,	
P26	Profile	AC	28926	Point to point acceleration	100.00	rps/s
P27	Profile	DE	39239	Point to point deceleration	100.00	rps/s
P28	Profile	VC	J0859	Point to point secondary velocity	2.000	rps
P29	Profile	JC1	JL 259	Jog mode speed 1	2.000	rps
P30	Profile	JC2	DLOEP	Jog mode speed 2	10.000	rps
P31	Profile	JC3		Jog mode speed 3	20.000	rps
P32	Profile	JC4	JL 569	Jog mode speed 4	25.000	rps
P33	Profile	JC5		Jog mode speed 5	30.000	rps
P34	Profile	JC6	P34JC	Jog mode speed 6	35	rps
P35	Profile	JC7	P3SJC	Jog mode speed 7	40.000	rps
P36	Profile	JC8	P36JC	Jog mode speed 8	50.000	rps
P37	Config	ER	P37Er	Encoder resolution	10000	counts/rev
P39	Config	EG	239669	Electronic gearing	10000	counts/rev
P40	Config	PV	₽ 40₽υ	Secondary Electronic gearing	10000	counts/rev
P41	Config	EN	P4 IEn	Numerator of electronic gearing ratio	1000	
P42	Config	EU	6456 م	Denominator of electronic gearing ratio	1000	
P43	Config	SZ	P4352	Input Pulse Setting	1792	
P44	Config	PF	РЧЧРЕ	Position Fault limit	2000	counts
P45	Config	PL	<u> ԲԿՏԲլ</u>	Dynamical Position error Range	10	counts
P46	Config	PD	P46Pd	In Position Error Range	10	counts
P47	Config	PE	P47PE	In position duration count	10	counts
P48	Config	тт	P4822	Pulses Input Completion count	2	ms
P49	Analog	AP	P498P	Analog Position Gain	8000	counts
P50	Analog	AG	PSORG	Analog Velocit Gain	20.000	rps
P51	Analog	AN	PS IRn	Analog Torque Gain	1.00	А
P52	Analog	AV1	PS2Ru	Analog input1 offset	0.000	V

* : This parameter depends on motor models.

P53	Analog	AV2	PS3Ru	Analog input2 offset	0.000	V
P54	Analog	AV3	PS4Ru	Differential analog input offset	0.000	V
P55	Analog	AS	PSSRE	Analog type	0	
P56	Analog	AD1	PS6Rd	Analog input1 deadband	0	mv
P57	Analog	AD2	P578d	Analog input2 deadband	0	mv
P58	Analog	AD3	PS8Rd	Differential analog deadband	0	mv
P59	Analog	AF	PS9RF	Analog input low pass filter value	500	Hz
P60	Analog	AT	PEORE	Analog threshold	0.000	V
P61	Analog	FA	P6 IF 8	Analog 1/2 function	33	
P62	I/O	SI	1 1294	Servo enable input setting	2	
P63	I/O	AI	P638 .	Alarm Reset input setting	3	
P64	I/O	DL	P64dL	End-of -travel limit Setting	3	
P65	I/O	MI	P650 .	X7, X8, X9, X10 input function setting	3333	
P66	I/O	AO	P6680	Alarm output function setting	1	
P67	I/O	BO	P6760	Motor brake control setting	1	
P68	I/O	MO	268No	Y3, Y4, Y5, Y6 output function setting	3341	
P69	I/O	BD	Р69ьd	Brake disengage Delay	200	ms
P70	I/O	BE	P706E	Brake engage delay	200	ms
P71	I/O	FI1	P7 IF I	Input X9 noise filter	0	
P72	I/O	FI2	132L J	Input X10 noise filter	0	
P73	I/O	FI3	P73F .	Input X11 noise filter	0	
P74	I/O	FI4	P74F,	Input X12 noise filter	0	
P76	communication	PR	P76Pr	Communication protocol	15	
P77	communication	TD	թյյեզ	Transmit delay	2	
P78	communication	BR	P 785r	Baud rate	1	
P79	communication	DA	8962 4	RS-485 Address	32	
P80	communication	со	P80Co	CANopen Node ID	1	

P81	communication	СВ	P8 IC b	CANopen Baudrate	0	
P82	Regeneration	ZR	P822	Regen resistor value	40	Ω
P83	Regeneration	ZC	22589	Regen resistor continuous wattage	200	W
P84	Regeneration	ZT	P842E	Regen resistor peak time	125.00	ms
P85	Other	VR	P85ur	Ripple range setting for velocity reach	0.000	rps
P86	Other	то	P8620	Tach out counts	0	
P87	Other	TV	2875 0	Ripple range setting for torque reach	0.00	А
P88	Other	PK	P88P5	Parameter lock on the drive's control panel	0	
P89	Other	DD	68944	LED Default status monitor type	0	
P90	Other	MA	P9008	LED Warning Display Mask Code	65535	
P91	Other	HA1	P9 IH 8	Accel of seeking end-of-travel limit during homing	100	rps/s
P92	Other	HA2	84264	Accel of seeking homing switch during homing	100	rps/s
P93	Other	HA3	P93HR	Accel of feeding to homing switch during homing	10	rps/s
P94	Other	HO1	P94Ho	Decel of seeking end-of-travel limit during homing	100	rps/s
P95	Other	HO2	P95Ho	Decel of seeking homing switch during homing	100	rps/s
P96	Other	HO3	P96Ho	Decel of feeding to homing switch during homing	10	rps/s
P97	Other	HV1	P97H u	Velocity of seeking end-of-travel limit during homing	10	rps
P98	Other	HV2	P98Hu	Velocity of seeking homing switch during homing	5	rps
P99	Other	HV3	P99Hu	Velocity of feeding to homing switch during homing	0.5	rps
P100	Other	KL	POORL	Follow factor	0	

8.3 Parameter Description

	Clobal gain 1	Data Range	Default	Unit	Data type
P-00 (KP)	Global gain 1	0~32767	10000		DEC

Sets or requests the servo control proportional gain term. Gain value is relative: "0" meaning no gain, "32767" meaning full gain. This parameter is the primary gain term for minimizing the position error. Larger KP value means higher stiffness, and fast response. However, if gain value is too high, it will leads to vibration.

Use input X7 for global gain selection. When gain selection function is used, it helps the servo drive to run the motor with least time delay and as faithful as possible against the host command requirement. Especially in the cases, when load characteristic changes significantly, change off gain value will reduce motor's settleing time, motor vibration and so on. It will highly optimize motor's overall performance. The two global gain parameters are: P-00 (KP), and P-01 (KG).

		Data Range	Default	Unit	Data type
P-01 (KG)	Global gain 2	0~32767	12000		DEC

Sets or requests the secondary servo control proportional gain term. Gain value is relative: "0" meaning no gain, "32767" meaning full gain. This parameter is the primary gain term for minimizing the position error. Larger KP value means higher stiffness, and fast response. However, if gain value is too high, it will leads to vibration.

	Droportion goin	Data Range	Default	Unit	Data type
P-02 (KF)	Proportion gain	0~32767	10000		DEC

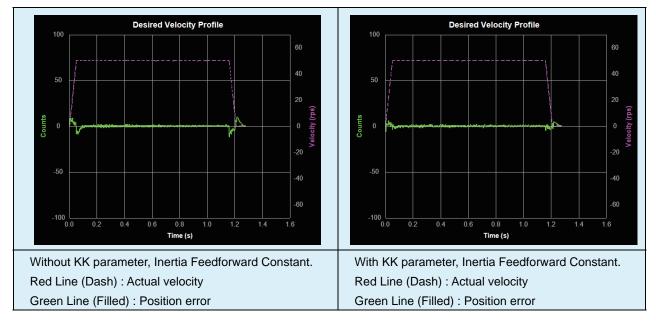
The servo control proportional gain term. Gain value is relative: "0" meaning no gain, "32767" meaning full gain. This parameter is the primary gain term for minimizing the position error. Increase of KF will increase stiffness and reduce in position time duration. However, it might cause vibration if gain is too large.

	Derivacio	Data Range	Default	Unit	Data type
P-03 (KD)	Deriv gain	0~32767	3000		DEC

The servo control differential gain. Gain value is relative: "0" meaning no gain, "32767" meaning full gain. It works to damp low speed oscillations.

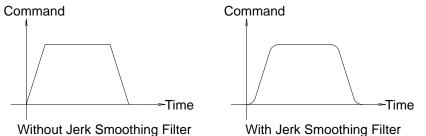
	Demoire acia	Data Range	Default	Unit	Data type
P-04 (KV)	Damping gain	0~32767	10000		DEC

The servo control Proportional gain term of the velocity error. Gain value is relative: 0 = no gain, 32767 = full gain. KV minimizes the velocity error, and vibration in position control mode.


	Integrator gain	Data Range	Default	Unit	Data type
P-05 (KI)	Integrator gain	0~32767	500		DEC

The servo control integrator gain term. Gain value is relative: "0" meaning no gain, "32767" meaning full gain. It minimizes (or may even eliminate) position errors especially when holding position.

	In artic Eachforward Constant	Data Range	Default	Unit	Data type
P-06 (KK)	Inertia Feedforward Constant	0~32767	800		DEC


The servo control inertia feed forward gain. Gain value is relative: "0" meaning no gain, "32767" meaning full gain. KK improves acceleration control by compensating for the load inertia.

	lorik Filter Franziscov	Data Range	Default	Unit	Data type
P-07 (KJ)	Jerk Filter Frequency	0~5000	5000		DEC

This parameter sets the Jerk Filter frequency in Hz. The lower the frequency value the more pronounced the S-curve profile will be. Setting the value to 0 will disable the filter.

S-curve acceleration/deceleration ramps are beneficial in positioning systems where instantaneous changes in speed may cause the load to jerk excessively. One example is when the load is connected to the motion actuator via a long moment arm. If the arm is not sufficiently rigid, changes in speed at the actuator can result in undesirable oscillations and increased settling time at the load. Smoothed transitions in speed changes, can alleviate this unwanted motion and reduce settling time.

With Jerk Smoothing Filter

P-08 (VP) Velocity Loop Proportional Gain	Data Range	Default	Unit	Data type		
	P-08 (VP)	velocity Loop Proportional Gain	0~32767	15000		DEC

The velocity-mode servo control Proportional gain term. Gain value is relative: 0 = no gain, 32767 = full gain. VP minimizes velocity error when in velocity mode 2.

		Data Range	Default	Unit	Data type
P-09 (VI)	Velocity Loop Integral Gain	0~32767	1000		DEC

The velocity-mode ("JM2") servo control integrator gain term. Gain value is relative: 0 = no gain, 32767 = full gain. VI minimizes steady state velocity errors.

	Data Range	Default	Unit	Data type	
P-10 (KE)	Deriv Filter factor	0~32767	15000		DEC

The differential control parameters filter frequency. The filter is a simple one-pole, low-pass filter intended for attenuating high frequency oscillations. The value is a constant that must be calculated from the desired roll off frequency.

P-11 (KC) PID Filter factor	Data Range	Default	Unit	Data type
	0~32767	25000		DEC

The servo control overall filter frequency. The filter is a simple one-pole, low-pass filter intended for attenuating high frequency oscillations. The value is a constant that must be calculated from the desired roll off frequency.

P-12 (CM) Main control mode	Data Range	Default	Unit	Data type
	Main control mode	1~8, 10~18, 21, 22, 25	7	

Parameter P-12 (CM) is used to set drive's control mode.

Parameter mode list are as follows:

Mode	Control Signal	P-12 (CM)	Description
SCL command mode	SCL command	1	Use SCL command to control motor's output torque
Analog input torque mode	+10~-10V Analog signal	2	Use external analog voltage input signal to control motor's output torque. Analog torque mode: No run/stop signal,
			No direction signal. Analog torque mode: no run/stop signal;
Analog input torque mode	+10~-10V Analog signal	3	X2 is closed, motor will change its current rotary direction.
Analog input torque mode	+10~-10V Analog signal	4	Analog torque mode: no run/stop signal; X2 is open, motor will change its current rotary direction.
Analog input torque mode	+10~-10V Analog signal	5	Analog torque mode: X1 for run/stop signal, No direction signal.
Analog input torque mode	+10~-10V Analog signal	6	Analog torque mode: X1 for run/stop signal; X2 is open, motor will change its current rotary direction.
Analog input torque mode	+10~-10V Analog signal	8	Analog torque mode: X1 for run/stop signal; X2 is close, motor will change its current rotary direction.
Digital pulse position mode	STEP & Direction; CW/CCW Pulse; A/B Quadrature.	7	Up to 500KHz open collector input signal or up to 2MHz differential input signal.
Command velocity mode	SCL command	10	Use SCL command to control motor rotation velocity.
Analog velocity mode	+10~-10V Analog signal	11	Using external analog voltage input to motor velocity. Analog velocity mode, NO run/stop signal, X2 is direction switch.
Analog velocity mode	+10~-10V Analog signal	12	Analog velocity mode, X1 is run/stop signal, X2 is direction switch
Velocity mode	Digitial input signal	15	Profile velocity mode, after drive is enabled. The drive will run at velocity set by P-21 (JS). NO run/stop signal, X2 is direction switch.
Velocity mode	Digitial input signal	16	Profile velocity mode, after drive is enabled. The drive will run at velocity set by P-21 (JS). NO run/stop signal, X2 is direction switch.
Multi velocity mode	Digitial input signal	17	Profile velocity mode, NO run/stop signal. X2 is direction switch. X10, X11, X12 is speed selection switch.
Multi velocity mode	Digitial input signal	18	Profile velocity mode, X1 is run/stop switch. X2 is direction switch. X10, X11, X12 is speed selection switch.
Point to point Velocity	SCL command	21	Use SCL command to control point to point position mode.
Analog position mode	+10~-10V Analog signal	22	Use analog input voltage signal for position control .
Position table	Internal position mode	25	It have two motion control mode: linear motion with maximum of 64 position set points, and rotary motion with maximum of 32 position division points.

	Data Range	Default	Unit	Data type	
P-13 (CN)	Secondary control mode	1~8, 10~18, 21, 22, 25	21		DEC

Servo drive's secondary control mode. Please refer to P-12 (CM) main control mode, and 7.1.5 control mode selection.

D 14 (DM) Dowor up mode	Data Range	Default	Unit	Data type	
P-14 (PM)	P-14 (PM) Power-up mode	2, 5, 7,	2		DEC

The power-up mode of the drive. PM determines how the drive is configured for serial communications at power-up. For example, for SCL applications set PM=2 or PM=5. The power-up mode is also set when configuring the drive with Quick Tuner or Configurator. PM2 (Q / SCL) is the same as PM7 (Q Program Mode), except the program is not automatically executed at power up.

P-15 (JM) Jog mode	Data Range	Default	Unit	Data type	
P-15 (JIVI)	Jog mode	1, 2	2		DEC

There are two Jog modes available:

JM 1: Jog Mode 1 uses a "position-type" of servo control that moves the target position which causes the servo to move at the set velocity. Jog Mode 1 will cause the servo motor to always move the same distance over time. A drawback is that the servo can fault if the position error during the move exceeds the value set by the PF (Position Fault) command.

JM 2: uses a "velocity-type" of servo control that applies torque to the motor to maintain velocity. This method functions better with high inertia loads because it ignores the value set by the PF (Position Fault) command. It also allows the drive to function in a "torque-limited velocity" mode or a "velocity-limited torque" mode. Jog Mode 2 also uses a different set of control parameters, VI and VP, for "tuning" the velocity mode.

Current Command of Torque	Data Range	Default	Unit	Data type	
P-16 (GC)	Mode	Based on drive's output ability	0	0.01A	DEC

The immediate current for the servo motor and drive when the servo drive is set for Command Torque Mode.

NOTE: if you need to view or set this value on drive' s control panel P-16 (GC), please refer to following calculation:

LED display value = $\underline{B} \times 100$

Where **B** is target setting current, Unit for is A (amps)

	Data Range	Default	Unit	Data type	
P-17 (CC)	Rated Maximum current	Dependson motor model	0.5	А	DEC

The continuous (RMS) current setting of the servo drive.

NOTE: In normal operation, please DONOT change this parameter.

NOTE: if you need to view or set this value on drive' s control panel P-16 (CC), please refer to following calculation:

LED display value = $\underline{B} \times 100$

Where **B** is target setting current, Unit for is A (amps)

P-18 (CP) Peak current	Data Range	Default	Unit	Data type
	Dependson motor model	1.5	А	DEC

CM sets the peak (RMS) current setting of the servo drive. Peak current sets the maximum current that should be used with a given motor. When the motor position requires more than the continuous value, the peak current time calculation is done using I^2/T which integrates current values for more accurate modeling of drive and motor heating. The servo drive will allow peak current for nor more than one second. After one second of operation at peak current the current is reduced to the continuous current setting (see CC command).

NOTE: In normal operation, please DONOT change this parameter.

NOTE: if you need to view or set this value on drive's control panel P-18(CP), please refer to following calculation:

LED display value = $\underline{B} \times 100$

Where **B** is target setting current, Unit for is A (amps)

	Maximum valaaitu	Data Range	Default	Unit	Data type
P-20 (VIVI)	P-20 (VM) Maximum velocity	0.025~100	60	rps	DEC

The maximum motor velocity in rev/sec. Used in all control modes to limit the maximum speed of the drive.

NOTE: if you need to view or set this value on drive' s control panel P-20 (VM), please refer to following calculation:

LED display value = $\underline{V} \times 240$

Where \underline{V} is target velocity setting, Unit is rps (rev/sec).

P-21 (AM)	maximum acceleration/	Data Range	Default	Unit	Data type
P-21 (AM)	deceleration	0.167~5000	3000	rps/s	DEC

The maximum acceleration/deceleration allowed. When the targeted acceleration/deceleration excels the maximum value, the actual acceleration/deceleration will limit to the maximum value.

Also sets the deceleration rate used when an end-of-travel limit is activated during a move or when an ST (Stop) or SK (Stop & Kill) command is sent.

NOTE: if you need to view or set this value on drive' s control panel P-21 (AM), please refer to following calculation:

LED display value = $\underline{B} \times 6$

Where **B** is target maximum acceleration/deceleration setting, Unit is rps/s.

	log velocity	Data Range	Default	Unit	Data type
P-22 (JS)	Jog velocity	0.025~100	10	rps	DEC

The speed for Jog moves in rev/sec.

NOTE: If you need to view or set this value on drive' s control panel P-22 (JS), please refer to following calculation:

LED display value = $\underline{V} \times 240$

Where = \underline{V} is target velocity setting, Unit is rps (rev/sec).

		Data Range	Default	Unit	Data type
P-23 (JA)	Jog acceleration	0.167~5000	100	rps/s	DEC

The accel/decel rate for Jog moves and velocity control mode in rev/sec/sec. Setting JA overwrites the

both the last JA and JL values. This means that to have different jog accel and jog decel values, you should first send JA to set the jog accel and then send JL to set the jog decel.

NOTE: if you need to view or set this value on drive' s control panel P-23 (JA), please refer to following calculation:

LED display value = $\underline{B} \times 6$

Where \underline{B} is jog acceleration/deceleration setting, Unit is rps/s.

		Data Range	Default	Unit	Data type
P-24 (JL)	Jog deceleration	0.167~5000	100	rps/s	DEC

The accel/decel rate for Jog moves and velocity control mode in rev/sec/sec. Setting JA overwrites the both the last JA and JL values. This means that to have different jog accel and jog decel values, you should first send JA to set the jog accel and then send JL to set the jog decel.

NOTE: if you need to view or set this value on drive' s control panel P-23 (JA), please refer to following calculation:

LED display value = $\underline{B} \times 6$

Where **B** is jog acceleration/deceleration setting, Unit is rps/s.

	Deint to point Valacity	Data Range	Default	Unit	Data type
P-25 (VE)	Point to point Velocity	0.025~100	10	rps	DEC

The shaft speed for point-to-point move commands like FL, FP, FS, FD, SH, etc.

NOTE: if you need to view or set this value on drive' s control panel P-25 (VE), please refer to following calculation:

LED display value = $\underline{V} \times 240$

Where = \underline{V} is target velocity setting, Unit is rps (rev/sec).

	Deint to point exceloration	Data Range	Default value	Unit	Data type
P-26 (AC)	Point to point acceleration	0.167~5000	100	rps/s	DEC

The acceleration rate used in point-to-point move commands in rev/sec/sec.

NOTE: if you need to view or set this value on drive' s control panel P-26 (AC), please refer to following calculation:

LED display value = $\underline{B} \times 6$

Where \underline{B} is point to point move acceleration setting, Unit is rps/s.

	Deint to peint deceleration	Data Range	Default	Unit	Data type
P-27 (DE)	Point to point deceleration	0.167~5000	100	rps/s	DEC

The deceleration rate used in point-to-point move commands in rev/sec/sec.

NOTE: if you need to view or set this value on drive's control panel P-27 (DE), please refer to following calculation:

LED display value = $\underline{B} \times 6$

Where \underline{B} is point to point move deceleration setting, Unit is rps/s.

		Data Range	Default	Unit	Data type
P-28 (VC)	speed change	0.025~100	2	rps	DEC

The secondary speed for FC and FD moves.

NOTE: if you need to view or set this value on drive's control panel P-28 (VC), please refer to following calculation:

LED display value = $\underline{V} \times 240$

Where = \underline{V} is target velocity setting, Unit is rps (rev/sec).

	lag mada apaad 1	Data Range	Default	Unit	Data type
P-29 (JC)	Jog mode speed 1	0.025~100	2	rps	DEC

The first speed used in velocity mode. This only applies to control modes 15, 16, 17, and 18.

💽 Velocity	Setting		
Velocity	/ Settings		
		X10 X11 X12	
Speed1	2.0000 🚔 [rps	- 000	
Speed2	10.0000 🚔 [rps	- 0 0 -	= low (closed)
Speed3	20.0000 🚔 rps	- 0 0 0	
Speed4	25.0000 🚔 rps	- 0	
Speed6	30.0000 🚔 [rps		
Speed6	35.0000 🚔 rps	• • •	
Speed7	40.0000 🚔 rps		
Speed8	50.0000 🚔 [rps	-	
		ОК	Cancel

	lag made aread 2	Data Range	Default	Unit	Data type
P-30 (JC)	Jog mode speed 2	0.025~100	10	rps	DEC

The second speed used in velocity mode. This only applies to control modes 13, 14, 17, and 18.

	leg mede anord 2	Data Range	Default	Unit	Data type
P-31 (JC)	Jog mode speed 3	0.025~100	20	rps	DEC

The third speed used in velocity mode. This only applies to control modes 13, 14, 17, and 18.

	Data Range	Default	Unit	Data type	
P-32 (JC)	Jog mode speed 4	0.025~100	25	rps	DEC

The fourth speed used in velocity mode. This only applies to control modes 13, 14, 17, and 18.

	Jog mode speed 5	Data Range	Default	Unit	Data type
P-33 (JC)	Jog mode speed 5	0.025~100	30	rps	DEC

The fifth speed used in velocity mode. This only applies to control modes 13, 14, 17, and 18.

D 24 (10)		Data Range	Default	Unit	Data type
P-34 (JC)	Jog mode speed 6	0.025~100	35	rps	DEC

The sixth speed used in velocity mode. This only applies to control modes 13, 14, 17, and 18.

D 25 (10)	les mede enced 7	Data Range	Default	Unit	Data type
P-35 (JC)	Jog mode speed 7	0.025~100	40	rps	DEC

The seventh speed used in velocity mode. This only applies to control modes 13, 14, 17, and 18.

		Data Range	Default	Unit	Data type
P-36 (JC)	Jog mode speed 8	0.025~100	50	rps	DEC

The eighth speed used in velocity mode. This only applies to control modes 13, 14, 17, and 18.

		Data Range	Default	Unit	Data type
P-37 (ER)	Encoder resolution	200~12800	10000	counts	DEC

Sets the encoder resolution in quadrature counts. For example, if the motor connected to the drive has an 8000count (2000 line) per revolution encoder, set the encoder resolution to 8000.

NOTE: for MOONS' motor please DONOT change this parameter

		Data Range	Default	Unit	Data type
P-39 (EG)	Electronic gearing	200~32000	10000	counts	DEC

EG defines the pulses per revolution for electronic gearing. For example, with an EG value of 10000 the servo drive will require 10000 pulses from the master pulse source to move the servo motor 1 revolution.

	Secondory Electronic georing	Data Range	Default	Unit	Data type	
P-40 (PV)	Secondary Electronic gearing	200~32000	10000	counts	DEC	

PV defines the pulses per revolution for secondary electronic gearing. Please refer to 7.2.3 control pulse dividing switch function

	Numerator of electronic gearing	Data Range	Default	Unit	Data type
P-41 (EN)	ratioNumerator of electronic gearing ratio	1~1000	1000		DEC

Defines the numerator of electronic gearing ratio.

Please refer to 7.2.5 Electronic gearing ratio

	Denominator of electronic	Data Range	Default	Unit	Data type
P-42 (EU)	gearing ratio	1~1000	1000		DEC

Defines the denominator of electronic gearing ratio. Please refer to 7.2.5 Electronic gearing ratio

D 42 (87)	Input Dulas Satting	Data Range	Default	Unit	Data type
P-43 (SZ)	Input Pulse Setting	0~65535	1792		DEC

Pulse counter configuration and digital filter parameters in digital position control mode.

 Bit0~bit1: pulse type。
 Higher 8 Bits
 Lower 8 Bits

 0 = STEP/DIR
 Image: Step 2 and Step 2

Bit8~bit15: digital filter parameter

Please refer to 7.2.2 input pulse type and input noise filter

	Desition Fould limit	Data Range	Default	Unit	Data type
P-44 (PF)	Position Fault limit	0~32000	2000		DEC

The Position Fault limit in encoder counts. This value defines the limit threshold, in encoder counts, reached between actual position and commanded position before the system produces a position

fault error. On drive's LED display, it will

	Dynamical Pasitian array Banga	Data Range	Default	Unit	Data type
P-45 (PL)	Dynamical Position error Range	0~32000	10		DEC

Define the usage of input X10 as inhibiting the pulse input.

PI1: Inhibit the pulse input when input X10 is closed.

PI2: Inhibit the pulse input when input X10 is open.

PI3: Input X10 is used as general purpose input.

	In Position Error Range	Data Range	Default	Unit	Data type
P-46 (PD)	In Position Error Range	0~32000	10		DEC

This parameter is used to set in-position error range. For example, motor is in-position or in completion of rotating. The actual finish position is in the target In-position error range for the time that is longer than PE specified timing. Then the driver will define the motion complete or motor is in-position. Refer to P-47 (PE).

Please refer to 7.2.7 in position error output

	In position duration count	Data Range	Default	Unit	Data type
P-47 (PE)	In position duration count	0~32000	10	250us	DEC

PE sets the timing counts for In range determination. For example, if In position error P-46 (PD) is defined. PE will sets the time duration for the test, if no in-position is shown within the time duration, driver will define motor as in-position.

Time is counted as processor cycles, one cycle refers to 250µsec.

Please refer to 7.2.7 in position error output

D 49 (TT)	Bulace Input Completion count	Data Range	Default	Unit	Data type
P-48 (TT)	Pulses Input Completion count	0~20000	16	125us	DEC

This parameter is used to define a time duration. It is used to determine whether the driver has finished receiving all pluses or not. If the driver has not receive any pluses for the period that is longer than TT defined time, then the driver will define no pluses is sent to drive.

One count equivalent to 125µs

	Appleg Position Coin	Data Range	Default	Unit	Data type
P-49 (AP)	Analog Position Gain	0~32000	8000	counts	DEC

AP sets the analog Input gain that relates to motor position when the drive is in analog position command mode. Gain value sets the commanded position when the analog input is at the configured full scale value.

	Applog Volocity Coin	Data Range	Default	Unit	Data type
P-50 (AG)	Analog Velocity Gain	-100.000~100.000	20.000	rps	DEC

Analog gain value used in analog velocity modes. The gain value is used to establish the relationship between the analog input and the motor speed. The units are 0.25 rpm. For example, if the analog input is scaled to 0 - 5 volt input and the gain is set to 2400, when 5 volts is read at the analog input the motor will spin at 10 rps.

TIP: To set the analog velocity gain to the desired value, multiply the desired motor speed in rps by 240, or the desired motor speed in rpm by 4.

NOTE: if you need to view or set this value on drive's control panel P-50 (AG), please refer to following calculation:

LED display value = $\underline{V} \times 240$

Where \underline{V} is target velocity setting, Unit is rps (rev/sec).

		Data Range	Default	Unit	Data type
P-51 (AN)	Analog Torque Gain	Drive's maximum current output ability	1.00	А	DEC

This parametersets the analog Input gain that relates to motor position when the drive is in analog position control mode. Analog torque gain value sets the commanded torque when the analog input is at the configured full scale value ($\pm 10V$).

	Analog input1 offset	Data Range	Default	Unit	Data type
P-52 (AV)	Analog input i onset	-10.000~+10.000	0.000	А	DEC

The offset value of analog input 1 in volts. In some cases, even when host controls set the analog command to 0V, the servo motor might still rotate slowly. This is caused by voltage bias from the analog voltage supply. This can be adjusted by this offset value.

NOTE: if you need to view or set this value on drive' s control panel, please refer to following calculation:

LED display value = $\underline{A} \times 2730$

Where **A** is voltage offset, Unit is V.

	Analog input2 offect	Data Range	Default	Unit	Data type
P-53 (AV)	Analog input2 offset	-10.000~+10.000	0.000	А	DEC

The offset value of analog input 2 in volts. Please refer to 7.4.3.3 analog input offset.

		Data Range	Default	Unit	Data type
P-54 (AV)	Differential analog input offset	-10.000~+10.000	0.000	А	DEC

The offset value of differential analog input in volts. Please refer to 7.4.3.3 analog input offset.

		Data Range	Default	Unit	Data type
P-55 (AS)	Analog type	0~1	1		DEC

This is the analog input scaling setting. This is a code that determines what type of analog input scaling is desired.

0: single ended input

1: differential input

	Analog input1 deadhand	Data Range	Default	Unit	Data type
P-56 (AD)	Analog input1 deadband	0~255	0	mV	DEC

The analog deadband value of the analog input 1 in millivolts. The deadband value is the zone around the "zeroed" value of the analog input. This deadband defines the area of the analog input range that the drive should interpret as "zero". The deadband is an absolute value that in usage is applied to either side of the zero point.

	Analog input2 doadband	Data Range	Default	Unit	Data type
P-57 (AD)	Analog input2 deadband	0~255	0	mV	DEC

The analog deadband value of the analog input 2 in millivolts. The deadband value is the zone around the "zeroed" value of the analog input. This deadband defines the area of the analog input range that the drive should interpret as "zero". The deadband is an absolute value that in usage is applied to either side of the zero point.

	Differential analog deadhand	Data Range	Default	Unit	Data type
P-58 (AD)	Differential analog deadband	0~255	0	mV	DEC

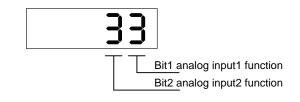
The analog deadband value of the differential analog input in millivolts. The deadband value is the zone around the "zeroed" value of the analog input. This deadband defines the area of the analog input range that the drive should interpret as "zero". The deadband is an absolute value that in usage is applied to either side of the zero point.

	Analog input filter value	Data Range	Default	Unit	Data type
P-59 (AF)	Analog input litter value	1~15990	500		DEC

Applies a digital filter to the analog input (s). This is a simple single pole filter that rolls off the all analog input. When analog input is used, there might be external interferences that affect the accuracy of the analog input voltage. In some cases, it will cause the motor to turn unexpectedly, or unstable torque output. Therefore, analog input filter is recommended. It is designed as a digital low pass filter; reasonable filter frequency can significantly improve the motor performance. Please refer to 7.3.4 analog input filter

		Data Range	Default	Unit	Data type
P-60 (AT)	Analog threshold	-10.000~10.000	0.000	V	DEC

This sets the analog Input Threshold that is used by the "Feed to Sensor" command. The threshold value sets the Analog voltage that determines a sensor state or a trigger value.


NOTE: if you need to view or set this value on drive's control panel P-60 (AT), please refer to following calculation:

LED display value = $\underline{A} \times 1000$

Where \underline{A} is target voltage value, Unit is V (volts).

		Data Range	Default	Unit	Data type
P-61 (FA)	Analog 1/2 function	00-33	33		HEX

Defines the function of the single analog input X1 and X2. It is defined by two digits, first from the right is X1, the other is X2

X1:

- 1: Analog input X1 is used as velocity or position reference input.
- 2: Not used.

3: Analog input X1 is used as general purpose analog input.

X2:

- 1: Not used.
- 2: Analog input X2 is used as torque reference input.
- 3: Analog input X2 is used as general purpose analog input.

In M Servo Suite parameter table, it is divided into 2 command, FA1 for first bit, and FA2 for second bit (from right to left)

Configuration Tuning - Sampling Parameter Table Open Save Print Export Upload from Drive Download to Drive Refresh												
SEQ	Category	Command	Unit	Software	Drive	Default	Range	Description(Double Click for Details)				
060	Analog	FA1		3		3	1 - 3	Analog 1 Function				
060	Analog	FA2		3		3	1 - 3	Analog 2 Function				

	Convo onoble input cotting	Data Range	Default	Unit	Data type
P-62 (SI)	Servo enable input setting	1, 2, 3	2		DEC

The usage of the Enable input. Input X3 is the default Enable input on all drives. There are 3 possible usage states for the Enable function:

SI1: Drive is enabled when X3 is open.

SI2: Drive is enabled when X3 is closed.

SI3: Input X3 is used as general purpose inputs.

Please refer to 7.1.1 servo on settings.

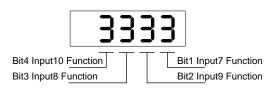
		Data Range	Default	Unit	Data type
P-63 (AI)	Alarm Reset input setting	1, 2, 3	3		DEC

Defines the function of the X3 input. This input can be used to clear a drive fault and reset the Alarm Code (see AL command).

Please refer to 7.1.2 alarm reset

	End of troval limit Satting	Data Range	Default	Unit	Data type
P-64 (DL)	End-oftravel limit Setting	1, 2, 3	3		DEC

CW and CCW end-of-travel limits are available on all drives and can be used to define the boundaries of acceptable motion in a motor/drive system.


For example, define inputs X5 and X6 as dedicated end-of-travel limits. If one of these inputs is activated while defined as an end-of-travel limit, motor rotation will stop in that direction, and an alarm code will show at the drive's status LEDs.

If not needed, X5 and X6 can be redefined as general purpose inputs.

Please refer to 7.1.3 CW/CCW limit

	X7, X8, X9, X10 input function	Data Range	Default	Unit	Data type
P-65 (MI)	setting	1111~3333	3333		DEC

Defines the functions for X7, X8, X9, X10 based on the number of digits from right to left .

Bit1 defines X7 for control global gain selection function

1: When input X7 is open select parameter KG, close for parameter KP.

2: When input X7 is open select parameter KP, close for parameter KG.

3: X7 uses as general purpose, parameter KP is used.

Bit2 defines X9 for electronic gearing selection

1: When input X9 is open select parameter EG for electronic gearing, close for parameter PV for electronic gearing.

2: When input X9 is open select parameter PV for electronic gearing, close for parameter EG for electronic gearing.

3: X9 as general purpose, use parameter EG for electronic gearing.

Bit3 defines X8 control selection function

1: When input X8 is open select CN control mode, close for CM control mode.

2: When input X8 is open select CM control mode, close for CN control mode.

3: X8 as general purpose.

Bit4 defines X10 for pulse inhibition function

1: When X10 is closed pulse inhibition function is on

2: When X10 is open pulse inhibition function is on

3: Input X10 set as general purpose

In M servo suite parameter table section, it is divided into 4 parameters, GS represents bit 1, DS represents bit 2, MS represents bit 3. PI represents bit 4

	Configuration Tuning - Sampling Parameter Table											
Open Save Print Export Upload from Drive Download to Drive Refresh												
SEQ	Category	Command	Unit	Software	Drive	Default	Range	Description(Double Click for Details)				
064	I/O	DS		3		3	1 - 3	Dividing Select				
064	I/O	GS		3		3	1 - 3	Gain Select				
064	I/O	MS		3		3	1 - 3	Control Mode Select				
064	I/O	PI		3		3	1 - 3	Pulse Inhibition				

Please also refer to 7.1.4 gain selection function, 7.1.5 control mode selection, 7.2.3 input electronic gearing selection, and 7.2.4 pulse inhibition function

	Alorm output function patting	Data Range	Default	Unit	Data type
P-66 (AO)	Alarm output function setting	1~3	3		DEC

Defines usage of digital output Y1. Normally this output is used to indicate an Alarm caused by a Drive Fault. This output can being reconfigured as a general purpose output for use with other types of output commands. There are three states that can be defined: AO1: Output Y1 is closed (active, low) when a Drive Fault is present. AO2: Output Y1 is open (inactive, high) when an Drive Fault is present. AO3: Output Y1 is not used as an Alarm Output and can be used as a general purpose output.

	Motor broke control patting	Data Range	Default	Unit	Data type
P-67 (BO)	Motor brake control setting	1~3	3		DEC

BO defines usage of digital output Y2 as the Brake Output, which can be used to automatically activate and deactivate a holding brake. Output Y2 can also be configured as a general purpose output for use with other types of output commands. There are three states that can be defined:

BO1: Output Y2 is closed (energized) when drive is enabled, and open when the drive is disabled.


BO2: Output Y2 is open (de-energized) when drive is enabled, and closed when the drive is disabled.

BO3: Output Y2 is not used as a Brake Output and can be used as a general purpose output.

Please also refer to 7.1.7 motor brake control

	Y3, Y4, Y5, Y6 output function	Data Range	Default	Unit	Data type	
P-68 (MO)	setting		3333		HEX	

P-68 (MO) defines Y3, Y4, Y5, Y6 output functions. It is based on digits from right to left.

Defines the drive's Motion Output digital output function on output Y3. There are three Motion Output states that can be defined:

8: When the output torque reached the targeted torque, output Y3 is closed

9: When the output torque reached the targeted torque, output Y3 is open

3: Output Y3 is used as general output.

Defines the drive's Motion Output digital output function on output Y4. There are five Motion Output states that can be defined:

- 6: When the dynamical position error is within the range specified by PL command, output Y3 is closed.
- 7: When the dynamical position error is within the range specified by PL command, output Y3 is open.

A:When the actual velocity reached the targeted velocity, output Y3 is closed.

B:When the actual velocity reached the targeted velocity, output Y3 is open.

3: Output Y3 is used as general output.

Defines the drive's Motion Output digital output function on output Y5. There are 3 Motion Output states that can be defined:

1: When the drive is enabled, output Y5 is closed.

2: When the drive is enabled, output Y5 is open.

3: Output Y5 is used as general output.

Defines the drive's Motion Output digital output function on output Y6. There are 4 Motion Output states that can be defined:

4: When the motion is completed and the motor is in position, output Y3 is closed.

5: When the motion is completed and the motor is in position,, output Y3 is open.

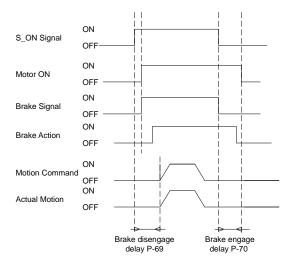
C:When the motor is running,

3: Output Y6 is used as general output.

In M servo suite parameter function, it is divided into 4 functions. MO1 for bit 1, MO2 for Bit 2, MO3 for bit 3, MO4 for bit 4

Configu	ration Tuning -	Sampling	Parameter '	Fable					
Ope	en Save	Print	Ex	port				Upload from Drive Download to Drive Refr	esh
SEQ	Category	Command	Unit	Software	Drive	Default	Range	Description(Double Click for Details)	*
067	I/O	MO1		3		3	3, 8, 9	Motion Output 1	
067	I/O	MO2		3		3	3, 6, 7, 10, 11	Motion Output 2	
067	I/O	MO3		3		3	1, 2,3	Motion Output 3	
067	I/O	MO4		3		3	3, 4, 5, 12	Motion Output 4	

P-69 (BD)	Proko dipongogo Dolov	Data Range	Default	Unit	Data type
F-09 (BD)	Brake disengage Delay	0~32000	200	ms	DEC
		Data Range	Default	Unit	Data type
P-70 (BE)	Brake engage delay	0~32000	200	ms	DEC


BD only takes effect if the BO command is set to 1 or 2. After a drive is enabled this is the time value that may delay a move waiting for the brake to disengage. When beginning a move the delay value must expire before a move can take place. The delay timer begins counting down immediately after the drive is enabled and the brake output is set. The BD command sets a time in milliseconds that a move may be delayed.

This Only takes effect if the BO command is set to 1 or 2. After a drive is commanded to be disabled,

this is the time value that delays the actual disabling of the driver output. When using the dedicated brake output

(see BO command) the output is activated immediately with the disable command, then the drive waits the delay

time before turning off the motor current.

	Input X0 poice filter	Data Range	Default	Unit	Data type
P-71 (FI)	Input X9 noise filter	0~32767	0		DEC

Applies a digital filter to the input X9. The digital input must be at the same level for the time period specified by the FI command before the input state is updated. For example, if the time value is set to 100 the input must remain high for 100 processor cycles before high is updated as the input state. One processor cycle is 250µsec. A value of "0" disables the filter.

	Input V10 paige filter	Data Range	Default	Unit	Data type
P-72 (FI)	Input X10 noise filter	0~32767	0		DEC

Applies a digital filter to the input X10. The digital input must be at the same level for the time period specified by the FI command before the input state is updated. For example, if the time value is set to 100 the input must remain high for 100 processor cycles before high is updated as the input state. One processor cycle is 250µsec. A value of "0" disables the filter.

	Input V11 paige filter	Data Range	Default	Unit	Data type
P-73 (FI)	Input X11 noise filter	0~32767	0		DEC

Applies a digital filter to the input X11. The digital input must be at the same level for the time period specified by the FI command before the input state is updated. For example, if the time value is set to 100 the input must remain high for 100 processor cycles before high is updated as the input state. One processor cycle is 250µsec. A value of "0" disables the filter.

P-74 (FI)	lanut V10 naise filter	Data Range	Default	Unit	Data type
P-74 (FI)	Input X12 noise filter	0~32767	0		DEC

Applies a digital filter to the input X12. The digital input must be at the same level for the time period specified by the FI command before the input state is updated. For example, if the time value is set to 100 the input must remain high for 100 processor cycles before high is updated as the input state. One processor cycle is 250µsec. A value of "0" disables the filter.

	Communication protocol	Data Range	Default	Unit	Data type
P-76 (PR)	Communication protocol	1-127	15		DEC

The serial communication protocol settings. There are a number of settings that can be turned on or off in the PR command. Each setting is assigned a bit in a 8-bit binary word. The parameter of the PR command is the decimal equivalent of this word. If you send the PR command without a parameter the drive will respond with the decimal equivalent of the word as well. The different protocol settings and their bit assignments are shown below.

- Bit 0 = Default ("Standard SCL")
- bit 1 = Always use Address Character
- bit 2 = Ack/Nack

bit 3 = Checksum (RESERVED)

- bit 4 = RS-485 Adaptor
- bit 5 = 3-digit numeric register addressing
- bit 6 = Checksum Type
- bit 7 = Little endian or big endian used in MODBUS type drive

bit 8 = Four wires/two wires

D 77 (TD)	Tropomit dolou	Data Range	Default	Unit	Data type
P-77 (TD)	Transmit delay	0~100	2		DEC

The time delay used by the drive when responding to a command that requests a response. Typically this is needed when using the 2-wire RS-485 interface (Half-duplex). Because the same wires are used for both receive and transmit a time delay is usually needed to allow transition time.

	David rate	Data Range	Default	Unit	Data type
P-78 (BR)	Baud rate	1~5	1		DEC

This parameter sets the bit rate (baud) for serial communications. At power up a drive will send its power-up packet detected after 1 second and the drive is configured for SCL or Q operation (see PM command) the drive will setthe baud rate according to the value stored in the Baud Rate NV parameter. A Host system can set the baud rateat anytime using this command.

1 = 9600bps

2 = 19200bps

3 = 38400bps

4 = 57600bps

5 = 115200bps

	RS-485 Address	Data Range	Default	Unit	Data type
P-79 (DA)	RS-485 Address	1~32	32		DEC

The individual drive address character for multi-drop RS-485/MODBUS communications. This command is not required for single-axis (point-to-point) or RS-232 communications.

		Data Range	Default	Unit	Data type
P-80 (CO)	CANopen Node ID	1~127	1		DEC

The CANopen NODE-ID for CANOpen type drives.

	D 91 (CD) CANanan Baudrata	Data Range	Default	Unit	Data type
P-81 (CB)	CANopen Baudrate	0-7	0		DEC

CANopen drive supports 8 types for baud rate.

Setting value	Baud rate	Setting value	Baud rate
0	1M	4	125K
1	800K	5	50K
2	500K	6	25K
3	250K	7	12.5K

		Data Range	Default	Unit	Data type
P-82 (ZR)	Regen resistor value	0-1000	40	Ω	DEC

The regeneration resistor value. M2 drives dynamically calculate the continuous wattage induced into an external regeneration resistor and must know the value of the regen resistor to do this effectively.

P-83 (ZC) Regen resi	Regen resistor continuous	Data Range	Default	Unit	Data type
P-63 (20)	wattage	0-32000	200	W	DEC

Calculate the continuous wattage induced into an external regeneration resistor and must know the continuous wattage rating of the regen resistor to do this effectively.

D 94 (7T)	Pagan register peak time	Data Range	Default	Unit	Data type
P-84 (ZT)	Regen resistor peak time	0-8000	250	ms	DEC

The regeneration resistor time constant. Decides the peak time that the resistor can tolerate full regeneration voltage. The time is scaled as period count. One period is 250us.

Ripple	Ripple range setting for velocity	Data Range	Default	Unit	Data type
P-85 (VR)	reach	0-136	0.000	Unit rps	DEC

The velocity ripple value around the targeted velocity. If the difference between the actual velocity and targeted velocity is within the ripple value. The driver will then define actual torque meets its target torque value.

Please refer to 7.3.3.7 target velocity reach

	Data Range	Default	Unit	Data type	
P-86 (TO)	Tach out counts		0		DEC

The count value of tach out per revolution.

0 = 1 * pole pairs

138

- 1 = 2 * pole pairs
- 2 = 4 * pole pairs
- 3 = 8 * pole pairs
- 4 = 16 * pole pairs
- 5 = 32 * pole pairs
- 6 = 64 * pole pairs
- 7 = 128 * pole pairs

	Ripple range setting for torque	Data Range	Default	Unit	Data type
P-87 (TV)	reach	0.00-1.50	0.00	А	DEC

The torque ripple value around the targeted torque. If the difference between the actual torque and targeted torque is within the ripple value. The driver will then define actual torque meets its target torque value.

Please refer to 7.4.3.7 torque reach for more details.

P-88 (PK)	Parameter lock on the drive's	Data Range	Default	Unit	Data type
P-00 (PK)	control panel	0, 1	0		DEC

This parameter determines whether the parameters of the driver can be modified directly from the push bottoms on the driver.

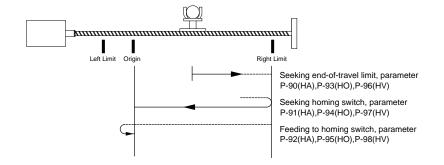
0 = Yes

1 = No

	Data Range	Default	Unit	Data type	
P-89 (DD)	LED Default status monitor type	0~14	0		DEC

Sets or requests the default monitor status on the driver's LEDs display.

P-90 (MA)	LED Warning Display Mask	Data Range	Default	Unit	Data type
P-90 (IVIA)	Code	0~65535	65535	Unit	DEC


This parameter setting can mask some unwanted warnings from driver's LED display. In order to avoid the constant flashing from the driver's display. However, it only limits to certain warning: CCW/CW Limits; under voltage; move while disabled; current foldback; blank Q segments, flash memory; Comm error.

Accel of seeking end-o	Accel of seeking end-of-travel	Data Range	Default	Unit	Data type
P-91 (HA)	limit during homing	0.167~5000	100	rps/s	DEC

In homing mode, this parameter sets the acceleration rate for seeking the end of travel limit.

Please refer to the graph below.

	Accel of seeking homing switch	Data Range	Default	Unit	Data type
P-92 (HA)	during homing	0.167~5000	10	rps/s	DEC

In homing mode, after end of travel is reached, this sets the acceleration rate for seeking the homing switch.

Please refer to parameter P-91 (HA)

	P-93 (HA) Accel of feeding to homing switch during homing	Data Range	Default	Unit	Data type
P-93 (HA)		0.167~5000	10	rps/s	DEC

In homing mode, after the homing switch is reached it sets the acceleration rate for feed back to the homing switch.

Please refer to parameter P-91 (HA)

	Decel of seeking end-of-travel	Data Range	Default	Unit	Data type
P-94 (HO)	limit during homing	0.167~5000	100	rps/s	DEC

In homing mode, this parameter sets the deceleration rate for seeking the end of travel limit.

Please refer to parameter P-91 (HA)

	Decel of seeking homing switch	Data Range	Default	Unit	Data type	
P-95 (HO)	during homing	0.167~5000	10	rps/s	DEC	

In homing mode, after end of travel is reached, this sets the deceleration rate for seeking the homing switch.

Please refer to parameter P-91 (HA)

	96 (HO) Decel of feeding to homing switch during homing	Data Range	Default	Unit	Data type
P-96 (HO)		0.167~5000	10	rps/s	DEC

In homing mode, after the homing switch is reached it sets the deceleration rate for feed back to the homing switch.

Please refer to parameter P-91 (HA)

	Velocity of seeking end-of-travel	Data Range	Default	Unit	Data type
P-97 (HV)	P-97 (HV) limit during homing	0.167~5000	100	rps/s	DEC

In homing mode, this parameter sets the velocity rate for seeking the end of travel limit.

Please refer to parameter P-91 (HA)

	Velocity of seeking homing	Data Range	Default	Unit	Data type
P-98 (HV)	switch during homing	0.167~5000	10	rps/s	DEC

In homing mode, after end of travel is reached, this sets the velocity rate for seeking the homing switch.

Please refer to parameter P-91 (HA)

	Velocity of feeding to homing	Data Range	Data Range Default Unit	Data type	
P-99 (HV)	switch during homing	0.167~5000	10	rps/s	DEC

In homing mode, after the homing switch is reached it sets the velocity rate for feed back to the homing switch.

Please refer to parameter P-91 (HA)

D 400 (KL)	Follow factor	Data Range	Default	Unit	Data type
P-100 (KL)	Follow factor	-32000~+32000	0		DEC

Servo follow factor: Higher value will reduce system noise, eliminate the overshoot, but it will reduce the system dynamic following performance. Lower value will raise system stiffness, but will cause system noise probably.

9. Communication

Model type	Communication
-Q	RS-232
-R	RS-485
-C	CANopen
-IP	Ethornot
-E	Ethernet

M2 series AC servo drive supports multiple communication interface.

9.1 RS-232 communication

For Q type drives, port CN6 is used for RJ-11 communication port, it is used for RS-232 communication. Customers can use serial communication command SCL to control the drive.

9.1.1 What is SCL

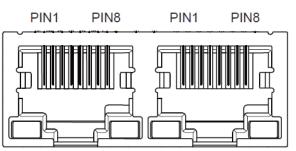
SCL or serial command language, was developed by MOONS to give users a simple way to control a motor drive via a serial port. This eliminates the need for separate motion controllers or to supply control signals, like Pulse & Direction, to your step and servo motor drives. It also provides an easy way to interface to a variety of other industrial devices like PLCs, industrial computers, and HMIs, which most often have standard or optional serial ports for communicating to other devices.

NOTE: For more details about SCL command, please download Host Command Reference manual from MOONS website.

9.1.2 RS-232 Connections

For servo drive port CN6, RJ-11 pin definitions are as follows:

PIN	Definition	
1, 3, 6	Not used	
2	RX	
4	ТХ	
5	GND	


9.2 RS-485 Communication

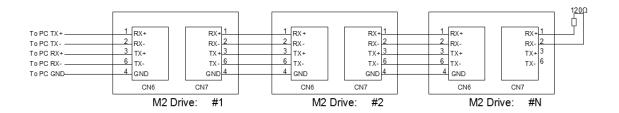
R type drive uses port CN6 and CN7 for standard RJ45 (8p8C) design. This can be used to build RS-485 daisy chain networks. In addition to the SCL command controlling methods, customers can also use ModBUS/RTU to control the drive.

9.2.1 RS-485 PIN definition

For RS-485 communication, customer can use the dual RJ45 on the side of the drive to build the daisy chain network system.

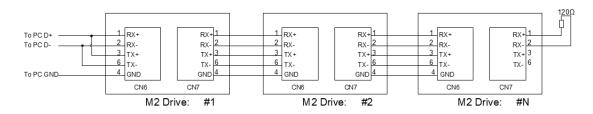
Pin definitions as follows:

PIN	Definition
4, 5, 7, 8	GND
1	RX+
2	RX-
3	TX+
6	TX-


9.2.2 RS-485 Connection Method

RS-422/485 communication allows connection of more than one drive to a single host PC, PLC, HMI or other computer. It also allows the communication cable to be long. The use of Category 5 cable is recommended as it is widely used for computer net- works, inexpensive, easily obtained and certified for quality and data integrity.

The M2 drives can be used with either Two-Wire or Four-Wire RS-422/485 implementation. The connection can be point-to-point (i.e. one drive and one host) or a multi-drop network (one host and up to 32 drives).


Four-Wire Configuration

Four-Wire Systems utilize separate transmit and receive wires. One pair of wires must connect the host's transmit signals to each drive's RX+ and RX- terminals. The other pair connects the drive's TX+ and TX-terminals to the host's receive signals. A logic ground terminal is provided on each drive and can be used to keep all drives at the same ground potential. This terminal connects internally to the DC power supply return (V-), so if all the drives on the RS-422/485 network are powered from the same supply it is not necessary to connect the logic grounds. One drive's GND terminal should still be connected to the host computer ground.

Two-Wire Configuration

In a 2-wire system, the host must disable its transmitter before it can receive data. This must be done quickly before a drive begins to answer a query. The M2 drive includes a transmit delay parameter that can be adjusted to compensate for a host that is slow to disable its transmitter. This adjustment can be made over the network using the TD command, or it can be set using the M servo suite software. It is not necessary to set the transmit delay in a four wire system.

NOTE: For RJ45 crystal connector, we recommend standard CAT5 cables.

9.3 ModBUS/RTU Communication

There are two types of communication methods for ModBUS, ASCII(American Standard Code for information interchange) mode and RTU(Remote Terminal Unit)mode, this is defined based on different bus modulation and demodulation methods. For M2 series AC servo drives, only ModBUS RTU is supported.

9.3.1 Data Encode

Big-endian: The most significant byte (MSB) value is stored at the memory location with the lowest address; the next byte value in significance is stored at the following memory location and so on. This is akin to Left-to-Right reading in hexadecimal order.

For example: To store a 32bit data 0x12345678 into register address 40031 and 40032. 0x1234 will be defined as MSB, and 0x5678 as LSB. With big-endian system

Register 40031 = 0x1234

Register 40032 = 0x5678

When transfer 0x12345678, the first word will be 0x1234, and the second word will be 0x5678

Little-endian: The most significant byte (MSB) value is stored at the memory location with the highest address; the next byte value in significance is stored at the following memory location and so on. This is akin to Left-to-Right reading in hexadecimal order.

For example: To store a 32bit data 0x12345678 into register address 40031 and 40032. 0x5678 will be defined as MSB, and 0x1234 as LSB. With little-endian system

Register 40031 = 0x5678

Register 40032 = 0x1234

When transfer 0x12345678, the first words will be 0x5678, and the second words will be 0x1234

M2 drive parameter P-75 (PR) defines data transfer type

P-75 (PR) = 5 represents Big-Endian

P-75 (PR) = 133 represents Little-Endian

9.3.2 Communication Address

In the network system, each drive requires a unique drive address. Only the drive with the matching address will responded to the host command. In ModBUS network, address "0" is the broadcast address. It cannot be used for individual drive's address. ModBUS RTU/ASCII can set drive address from 1 to 31.

9.3.3 Communication Baud Rate And Framing

M2 series AC servo drive has a fixed communication data framing: 8,N,1. Date bits:8, parity checking: none, stop bit: 1.

Parameter P-77 (BR) defines the communication baud rate.

In serial communication, the change of baudrate will NOT effect immediately, it will ONLY effects at next power up of the drive.

- 1 = 9600bps
- 2 = 19200bps
- 3 = 38400bps
- 4 = 57600bps
- 5 = 115200bps

9.3.4 Power Up Mode

Parameter P-14 (PM) sets the power up mode for the drive. For current M2 servo drives, these are the power up mode:

- 8 = Modbus/RTU mode when powered up.
- 9 = Q mode with Modbus/RTU communication, when powered up.

9.3.5 Modbus/RTU Data Framing

ModBUS RTU is a master and slave communication system. The CRC checking code includes from drive's address bits to data bits. This standard data framing are as follows:

Address Function Data CRC

based on data transfer status, there can be two types of response code:

Normal ModBUS response:

response function code = request function code

ModBUS error response:

response function code = request function code + 0x80

providing an error code to indicate the error reasoning.

9.3.6 M2 Series AC Servo Drive Register Address And Function List:

M2 Series						
Register	Access	Data Type	Description	SCL Register		
40001	Read Only	SHORT	Alarm Code (AL)	f		
40002	Read Only	SHORT	Status Code (SC)	s		
40003	Read Only	SHORT	Drive Digital output			
40004	Read Only	SHORT	Drive Digital output	i		
400056	Read Only	LONG	Encoder Position (IE, EP)	е		
400078	Read Only	LONG	Immediate Absolute Position(IP)	I		
4000910	Write	LONG	Absolute Position Command(SP)	P (Capital)		
40011	Read Only	SHORT	Immediate Actual Velocity (IV0)	v		
40012	Read Only	SHORT	Immediate Target Velocity (IV1)	w		
40013	Read Only	SHORT	Immediate Drive Temperature (IT)	t		
40014	Read Only	SHORT	Immediate Bus Voltage (IU)	u		
4001516	Read Only	LONG	Immediate Position Error (IX)	x		
40017	Read Only	SHORT	Immediate Analog Input Value (IA)	а		
40018	Read Only	SHORT	Q Program Line Number	b		
40019	Read Only	SHORT	Immediate Current Command (IC)	с		
4002021	Read Only	LONG	Relative Distance (ID)	d		
4002223	Read Only	LONG	Sensor Position	g		
40024	Read Only	SHORT	Condition Code	h		
40025	Read Only	SHORT	Analog Input 1 (IA1)	j		
40026	Read Only	SHORT	Analog Input 2 (IA2)	k		
40027	Read Only	SHORT	Command Mode (CM)	m		
40028	R/W	SHORT	Point-to-Point Acceleration (AC)	A		
40029	R/W	SHORT	Point-to-Point Deceleration (DE)	В		
40030	R/W	SHORT	Velocity (VE)	V		
4003132	R/W	LONG	Point-to-Point Distance (DI)	D		
4003334	R/W	LONG	Change Distance (DC)	С		
40035	R/W	SHORT	Change Velocity (VC)	U		
40036	Read Only	SHORT	Velocity Move State	n		

40037	Read Only	SHORT	Point-to-Point Move State	0
40038	Read Only	SHORT	Q Program Segment Number	р
40039	Read Only	SHORT	Reserved	
40040	Read Only	SHORT	Phase Error	z
4004142	R/W	LONG	Position Offset	E
40043	R/W	SHORT	Miscella neous Flags	F
40044	R/W	SHORT	Current Command (GC)	G
4004546	R/W	LONG	Input Counter	I
40047	R/W	SHORT	Jog Accel (JA)	
40048	R/W	SHORT	Jog Decel (JL)	
40049	R/W	SHORT	Jog Velocity (JS)	J
40050	R/W	SHORT	Max Velocity	
40051	R/W	SHORT	Continuous Current(CC)	N
40052	R/W	SHORT	Peak Current (CP)	O (Capital)
40053	Read Only	SHORT	Reserved	
4005455	R/W	LONG	Pulse Counter	S
40056	R/W	SHORT	Analog Position Gain (AP)	X
40057	R/W	SHORT	Analog Threshold (AT)	Y
40058	R/W	SHORT	Analog Offset (AV)	Z
4005960	R/W	LONG	Accumulator	0
4006162	R/W	LONG	User Defined Register	1
4006364	R/W	LONG	User Defined Register	2
4006566	R/W	LONG	User Defined Register	3
4006768	R/W	LONG	User Defined Register	4
4006970	R/W	LONG	User Defined Register	5
4007172	R/W	LONG	User Defined Register	6
4007374	R/W	LONG	User Defined Register	7
4007576	R/W	LONG	User Defined Register	8
4007778	R/W	LONG	User Defined Register	9
4007980	R/W	LONG	User Defined Register	:
	<u> </u>			1

4008182	R/W	LONG	User Defined Register	;
4008384	R/W	LONG	User Defined Register	<
4008586	R/W	LONG	User Defined Register	=
4008788	R/W	LONG	User Defined Register	>
4008990	R/W	LONG	User Defined Register	?
4009192	R/W	LONG	User Defined Register	@
4009394	R/W	LONG	User Defined Register	[
4009596	R/W	LONG	User Defined Register	\
4009798	R/W	LONG	User Defined Register]
40099100	R/W	LONG	User Defined Register	^
40101102	R/W	LONG	User Defined Register	_
40103104	R/W	LONG	User Defined Register	× ×
40105	R/W	SHORT	Brake Release Delay(BD)	
40106	R/W	SHORT	Brake Engage Delay(BE)	
40107	Read Only	SHORT	Reserved	
40108	Read Only	SHORT	Reserved	
40109	Read Only	SHORT	Firmware version	
40110	R/W	SHORT	Analog Filter Gain(AF)	
40111	Read Only	SHORT	Reserved	
40112	Read Only	SHORT	Alarm Code High bit	
40113	R/W	SHORT	Jog Change(JC)	
40114	R/W	SHORT	Jog Change(JC)	
40115	R/W	SHORT	Jog Change(JC)	
40116	R/W	SHORT	Jog Change(JC)	
40117	R/W	SHORT	Jog Change(JC)	
40118	R/W	SHORT	Jog Change(JC)	
40119	R/W	SHORT	Jog Change(JC)	
40120	R/W	SHORT	Jog Change(JC)	
40121	R/W	SHORT	X9 Input Filter	
40122	R/W	SHORT	X10 Input Filter	

40123	R/W	SHORT	X11 Input Filter	
40124	R/W	SHORT	X12 Input Filter	
40125	R/W	SHORT	Command Opcode	
40126	R/W	SHORT	Parameter 1	
40127	R/W	SHORT	Parameter 2	
40128	R/W	SHORT	Parameter 3	
40129	R/W	SHORT	Parameter 4	
40130	R/W	SHORT	Parameter 5	
40131	R/W	SHORT	Global Gain(KP)	
40132	R/W	SHORT	Global Gain1(KG)	
40133	R/W	SHORT	Proportional Gain(KF)	
40134	R/W	SHORT	Damping Gain(KD)	
40135	R/W	SHORT	Velocity Gain(KV)	
40136	R/W	SHORT	Integral Gain(KI)	
40137	R/W	SHORT	Inertia Feed forward Gain(KK)	
40138	R/W	SHORT	Jerk Filter(KJ)	
40139	R/W	SHORT	Velocity Mode Proportional Gain(VP)	
40140	R/W	SHORT	Velocity Mode Integral Gain(VI)	
40141	R/W	SHORT	Damping Filter Gain(KE)	
40142	R/W	SHORT	Current Filter Gain(KC)	
40143	R/W	SHORT	Control Mode(CM)	
40144	R/W	SHORT	Control Mode 1(CN)	
40145	R/W	SHORT	Operation Mode(PM)	
40146	R/W	SHORT	Jog Mode(JM)	
40147	R/W	SHORT	Hard-Stop Current Limit(HC)	
40148	R/W	SHORT	Max Acceleration(AM)	
40149	Read Only	SHORT	Encoder Resolution(ER)	
40150	Read Only	SHORT	Reserved	
40151	Read Only	SHORT	Steps-Rev(EG)	
40152	R/W	SHORT	Electronic Ration Numerator(EN)	

40153	40153 R/W SHORT Electronic Ration Denominator(ED)					
40154	Read Only	SHORT	Step Mode (SZ)			
40155	R/W	SHORT	Position Fault(PF)			
40156	R/W	SHORT	Dynamic Position Error Count(PL)			
40157	R/W	SHORT	In-Position Counts(PD)			
40158	R/W	SHORT	In-Position Timing(PE)			
40159	R/W	SHORT	Pulse Complete Timing(TT)			
40160	R/W	SHORT	Analog Velocity Gain(AG)			
40161	R/W	SHORT	Analog Torque Gain(AN)			
40162	R/W	SHORT	Analog Offset 1(AV1)			
40163	R/W	SHORT	Analog Offset 2(AV2)			
40164	R/W	SHORT	Analog Type(AS)			
40165	R/W	SHORT	Analog Deadband 1(AD1)			
40166	R/W	SHORT	Analog Deadband 2(AD2)			
40167	R/W	SHORT	Analog Deadband (AD)			
40168	R/W	SHORT	Analog Function(FA)			
40169	R/W	SHORT	Servo Enable(SI)			
40170	R/W	SHORT	Alarm Reset(Al)			
40171	R/W	SHORT	Define Limits Input(DL)			
40172	R/W	SHORT	Motion Input			
40173	R/W	SHORT	Alarm Output(AO)			
40174	R/W	SHORT	Brake Output(BO)			
40175	R/W	SHORT	Motion Output(MO)			
40176	R/W	SHORT	Reserved			
40177	R/W	SHORT	Communication Protocol(PR)			
40178	R/W	SHORT	Transmit Delay(TD)			
40179	R/W	SHORT	Baud Rate(BR)			
40180	R/W	SHORT	Communication Address(DA)			
40181	R/W	SHORT	Velocity value(VR)			
40182	R/W	SHORT	Tach-out Count(TO)			

40183	R/W	SHORT	Torque Value(TV)
40184	R/W	SHORT	Parameters Lock(PK)
40185	R/W	SHORT	Default Display(DD)
40186	R/W	SHORT	Mask Alarm(MA)
40187	R/W	SHORT	Homing Acceleration 1
40188	R/W	SHORT	Homing Acceleration 2
40189	R/W	SHORT	Homing Acceleration 3
40190	R/W	SHORT	Homing Deceleration 1
40191	R/W	SHORT	Homing Deceleration 2
40192	R/W	SHORT	Homing Deceleration 3
40193	R/W	SHORT	Homing Velocity 1
40194	R/W	SHORT	Homing Velocity 2
40195	R/W	SHORT	Homing Velocity 3
40196	R/W	SHORT	Clamp Resistance(ZR)
40197	R/W	SHORT	Clamp Count (ZC)
40198	R/W	SHORT	Clamp time(ZT)
40199	Read Only	SHORT	Reserved
40200	Read Only	SHORT	Reserved

9.3.7 Command Opcode description

Register 40125 is defined as command Opcode, when following command is entered into register, the drive will execute the corresponding operation.

1) SCL Command Encoding Table

SCL Command Encoding Table							
Function	SCL	Opcode	Parameter 1	Parameter 2	Parameter 3	Parameter 4	Parameter 5
Alarm Reset	AX	0xBA	×	×	×	×	×
Start Jogging	CJ	0x96	×	×	×	×	×
Stop Jogging	SJ	0xD8	×	×	×	×	×
Encoder Function	EF	0xD6	0,1,2 or 6	×	×	×	×
Encoder Position	EP	0x98	Position	×	×	×	×
Feed to Double Sensor	FD	0x69	I/O Point 1	Condition 1	I/O Point 2	Condition 2	×
Follow Encoder	FE	0xCC	I/O Point	Condition	×	×	×
Feed to Length	FL	0x66	×	×	×	×	×
Feed to Sensor with Mask Distance	FM	0x6A	I/O Point	Condition	×	×	×
Feed and Set Output	FO	0x68	I/O Point	Condition	×	×	×
Feed to Position	FP	0x67	×	×	×	×	×
Feed to Sensor	FS	0x6B	I/O Point	Condition	×	×	×
Feed to Sensor with Safety Distance	FY	0x6C	I/O Point	Condition	×	×	×
Jog Disable	JD	0xA3	×	×	×	×	×
Jog Enable	JE	0xA2	×	×	×	×	×
Motor Disable	MD	0x9E	×	×	×	×	×
Motor Enable	ME	0x9F	×	×	×	×	×
Seek Home	SH	0x6E	I/O Point	Condition	×	×	×
Set Position	SP	0xA5	Position	×	×	×	×
Filter Input	FI	0xC0	I/O Point	Filter Time	×	×	×
Filter Select Inputs	FX	0xD3	×	×	×	×	×
Step Filter Freq	SF	0x06	Freq	×	×	×	×
Analog Deadband	AD	0xD2	0.001 V	×	×	×	×
Alarm Reset Input	AI	0x46	Function ('1''3')	I/O Point	×	×	×
Alarm Output	AO	0x47	Function ('1''3')	I/O Point	×	×	×
Analog Scaling	AS	0xD1	×	×	×	×	×
Define Limits	DL	0x42	13	×	×	×	×
Set Output	SO	0x8B	I/O Point	Condition	×	×	×
Wait for Input	WI	0x70	×	×	×	×	×
Queue Load & Execute	QX	0x78	112	×	×	×	×
Wait Time	WT	0x6F	0.01 sec	×	×	×	×
Stop Move, Kill Buffer	SK	0xE1	×	×	×	×	×
Stop Move, Kill Buffer	SKD	0xE2	×	×	×	×	×

For more detailed command functions description, please refer to Host Command Reference manual.

2) Digital I/O Function Selection And I/O Status

Character	hex code		
'0'	0x30	Index of encode	
'1'	0x31	input 1 or output 1	
'2'	0x32	input 2 or output 2	
'3'	0x33	input 3 or output 3	
'4'	0x34	input 4 or output 4	
'5'	0x35	input 5 or output 5	
'6'	0x36	input 6 or output 6	
'7'	0x37	input 7	
'8'	0x38	input 8	
'9'	0x39	input 9	
۲ <u>.</u> ۶	0x3A	input 10	
4.3 3	0x3B	input 11	
'<'	0x3C	input 12	
۲.	0x4C	low state (closed)	
'H'	0x48	high state (open)	
'R'	0x52	rising edge	
'F'	0x46	falling edge	

9.3.8 Function Code

MOONS drives currently support following Modbus function code:

- 1) 0x03: Read holding registers
- 2) 0x04: Read input registers
- 3) 0x06: Write single registers
- 4) 0x10: Write multiple registers

9.3.8.1 Function Code 0X03, Reading Multiple Holding Registers

If we want to read encoder's actual position command to drive Node ID 1, the data address for encoder's actual position is register 40005. If the register value is in decimal numbers it will be 250000, and the transfer method is P-75 (PR) = 5, for big-endian transfer.

Communication details are as follows:

Command Message (Master)							
Function	Data	Number Of Bytes					
Slave Address	01H	1					
Function Code	03H	1					
Starting Data Address	00H (High) 04H (Low)	2					
Number of Data (In word)	00 (High) 02 (Low)	2					
CRC Check Low	85	1					
CRC Check High	CA	1					

Response Message (slave)							
Function	Data	Number Of Bytes					
Slave Address	01H	1					
Function Code	03H	1					
Number of Data (In Byte)	04	1					
Content of Starting Data Address 40005	00H (High) 26H (Low)	2					
Content of second Data Address 40006	25H (High) A0 (Low)	2					
CRC Check Low	01H	1					
CRC Check High	10H	1					

Host Sending: 01 03 00 04 00 02 85 CA

Drive Reply: 01 03 04 00 26 25 A0 01 10

If error is occurred, drive reply format: 01 83 XX CRC_L CRC_H

Where XX = 01: Function code 03 unsupported

- XX = 02 : Incorrect reading on driving address or numbers
- XX = 03 : Reading register address out of range
- XX = 04 : Reading failure

9.3.8.2 Function Code 0x06, Writing Single Register

If we want to set motor rotary velocity 12.5 rps to drive node ID 11, the corresponding address is register 40030. The write in data value for the register will be $12.5 \times 240 = 3000$. In hexadecimal number, it is 12CH.

Communication Details are as follows:

Command Message (Master)				Response Message (slave)		
function	data	number of bytes		function	data	number of bytes
Slave Address	0BH	1		Slave Address	0BH	1
Function Code	06H	1		Function Code	06H	1
Starting Data Address	00H (High) 1DH (Low)	2		Starting Data Address	00H (High) 1DH (Low)	2
Content of Data	01 (High) 2C (Low)	2		Content of Data		2
CRC Check Low	19	1		CRC Check Low	19	1
CRC Check High	2B	1		CRC Check High	2B	1

Host Sending: 0B 06 00 1D 01 2C 19 2B

Drive Reply: 0B 06 00 1D 01 2C 19 2B

If error is occurred, drive reply format: 01 86 XX CRC_L CRC_H

Where XX = 01: Function code 06 unsupported

XX = 02: Incorrect writing on driving address or number

XX = 03 : Writing register address out of range

XX = 04 : Writing failure

9.3.8.3 Function Code 0X10, Writing Multiple Registers

If we writing target distance 30000 into drive NODE-ID 10, the correspondent register address will be 40031. Transfer into hexadecimal, it is 7530h.

Communication Details are as follows:

Command Message (Master)					
Function	Data	Number Of Bytes			
Slave Address	0AH	1			
Function Code	10H	1			
Starting Data Address	00H (High)	2			
Number of Doto	1EH (Low)				
Number of Data (In word)	00H (High) 02H (Low)	2			
Number of Data (In byte)	04H	1			
Content of first Data address	00 (High) 00 (Low)	2			
Content of second Data address	75H (High) 30H (Low)	2			
CRC Check Low	70	1			
CRC Check High	8F	1			

Response	Message (sla	ve)
Function	Data	Number Of Bytes
Slave Address	0AH	1
Function Code	10H	1
Starting Data Address	00H (High) 1EH (Low)	2
Number of Data (In word)	00H (High) 02H (Low)	2
CRC Check Low	20	1
CRC Check High	B5	1

Host Sending: 0A 10 00 1E 00 02 04 00 75 30 70 8F

Drive Reply: 0A 10 00 1E 00 02 20 B5

If error is occurred, drive reply format: 01 90 XX CRC_L CRC_H

Where XX = 01: Function code 10 unsupported

XX = 02 : Incorrect reading on driving address or number

XX = 03 : Reading register address out of range

XX = 04 : Reading failure

9.3.9 Modbus/RTU Applications

9.3.9.1 Position Control

1.Target Profile Planning

SCL command	Target Value	Unit	Dec	Dec (Hex)	Description
AC	100	rps/s	40028	600 (258h)	The unit for register 40028 is $\frac{1}{6}$ rps ² , when target acceleration is 100rps/s, the value will be 600
DE	200	rps/s	40029	1200 (258h)	The unit for register 40029 is $\frac{1}{6}$ rps ² . When target deceleration is 200rps/s, the value will be 1200
VE	10	rps	40030	2400 (960)	The unit for register 40030 is $\frac{1}{240}$ rps. When target velocity is 200 rps/s, the value will be 1200
DI	20000	counts	40031~40032	20000 (4E20h)	The target distance will be 20000 counts

2. Drive Setting

Parameter	Function			
P-75 (PR) = 5	Big-endian data transfer			
P-76 (TD) = 10	feedback delay 10ms			
P-77 (BR) = 3	communication baud rate 38400bps			
P-78 (DA) = 1	Communication address 1			
P-14 (PM) = 8	Power up mode as Modbus/RTU			

Use M servo suite software for configurations:

Configuration	Tuning - Sampling	Parameter Table						
-Motor Infor	mation ————			Control Me	ode			
SM0601AE2.	Config	Speed Limit	10.000 rps	Main Mode	Torque (IO Controlled)	•	Go to	
Reverse m	notor rotating direction	Acc/Dec Limit	1500.000 rps/s	2nd Mode	21: Point to Point Pos.	-	Go to	
Torque Co Different Single-Er								
Position Erro	r Fault a 2000	🕈 Counts 🔘 Not	used	Jerk Filt	er i i 500 🚔 Hz () Not i	Ised	

3. Sending Command

First Step :

Set acceleration register 40028 = 285h, deceleration register 40029 = 4B0h, velocity register 40030 = 960h, and target position $40031 \sim 40032 = 4E20h$.

Host Sending: 01 10 00 1B 00 05 0A 02 58 04 B0 09 60 00 00 4E 20 24 3B

Rive Respond: 01 10 00 1B 00 05 70 0D

Command Message (Master)							
Function	Data	Number Of Bytes					
Slave Address	01H	1					
Function Code	10H	1					
Starting Data Address	00H (High) 1BH (Low)	2					
Number of Data (In word)	00H (High) 05H (Low)	2					
Number of Data (In word)	0AH	1					
Content of first Data address 40028	02 (High) 58 (Low)	2					
Content of second Data address 40029	04H (High) B0H (Low)	2					
Content of third Data address 40030	09H (High) 60H (Low)	2					
Content of fourth Data address 40031	00H (High) 00H (Low)	2					
Content of fifth Data address 40032	4EH (High) 20H (Low)	2					
CRC Check Low	24	1					
CRC Check High	3B	1					

Command	Message (Sla	ave)
Function	Data	Number Of Bytes
Slave Address	01H	1
Function Code	10H	1
Starting Data Address	00H (High)	2
	1BH (Low)	2
Number of Data	00H (High)	2
(In word)	05H (Low)	۷
CRC Check Low	70	1
CRC Check High	0D	1
	1	1

Second Step: Point To Point Motion Command

Chapter 9.3.7 command Opode describes register 40125's control code. From the SCL code list shows that for point to point position motion, it requires to write data 0x66 to register 40125.

SCL Command Encoding Table								
Function	SCL	Opcode	Parameter 1	Parameter 2	Parameter 3	Parameter 4	Parameter 5	
Feed to Length	FL	0x66	×	×	×	×	×	

Host Sending: 01 06 00 7C 00 66 C8 38

Drive Reply: 01 06 00 7C 00 66 C8 38

Listed As Below:

Command I	Message (Ma	ster)		Command Message (Slave)		
Function	Data Number Of Bytes			Function	Data	Number Of Bytes
Slave Address	01H	1		Slave Address	01H	1
Function Code	06H	1		Function Code	06H	1
Starting Data Address	00H (High)	2		Starting Data Address	00H (High)	2
Starting Data Address	7CH (Low)	2		Starting Data Address	7CH (Low)	2
Content of Data	00 (High)		Content of Data	00 (High)	2	
Content of Data	66 (Low)	2		Content of Data	66 (Low)	2
CRC Check Low	C8	1		CRC Check Low	C8	1
CRC Check High	38	1		CRC Check High	38	1

9.3.9.2 JOG mode

1. JOG mode required parameters:

SCL command	Target Value	Unit	Dec	Dec (Hex)	Description
AC	100	rps/s	40047	600 (258h)	The unit for register 40028 is $\frac{1}{6}$ rps ² , when target acceleration is 100rps/s, the value will be 600
JL	200	rps/s	40048	1200 (258h)	The unit for register 40029 is $\frac{1}{6}$ rps ² . When target deceleration is 200 rps/s, the value will be 1200
JS	10	rps	40049	2400 (960)	The unit for register 40030 is $\frac{1}{240}$ rps. When target velocity is 200 rps/s, the value will be 1200

2. Drive Setting

Parameter	Function
P-75 (PR) = 5	Big-endian data transfer
P-76 (TD) = 10	Feedback delay 10ms
P-77 (BR) = 3	Communication baud rate 38400bps
P-78 (DA) = 1	Communication address 1
P-14 (PM) = 8 Power up mode as modbus/rtu	

Use M servo suite software for configurations:

n						
			-Control Mo	ode —		191
Config	Speed Limit	10.000 rps	Main Mode	Modbus	-	Go to
otating direction	Acc/Dec Limit	1500.000 rps/s	2nd Mode	21: Point to Point Pos.	•	Go to
L Add.	9600	• • Execute Q Program	bit/s(bps) n at Power U	p		
	🖲 Bi	g Endian 🔘 Little E	ndian			
	tings	tings L Add. 0 2 - ms 32 B	tings L Add. 0 2 ms Power-Up BaudRate 9600 Auto Execute Q Program 32 Bit Word Order	tings L Add. 0 2 ⊕ ms D ms Power-Up BaudRate 9600 bit/s(bps) □ Auto Execute Q Program at Power U 32 Bit Word Order	tings L Add. O Auto Execute Q Program at Power Up 32 Bit Word Order	Image: Second Project Link: Second pays tings Power-Up BaudRate 9600 Image: Second Project Link: Second pays Image: Second Project Link: Second Pays Image: Second Pays </td

3. Sending Command

First Step:

Set velocity mode acceleration register as 40047 = 258h, deceleration register as 40048 = 4B0h, and velocity register 40049 = 960h.

Host Sending: 01 10 00 2E 00 03 06 02 58 04 B0 09 60 A0 9F

Drive Reply: 01 10 00 2E 00 03 E0 01

Command Message (Master)				
Function	Data	Number Of Bytes		
Slave Address	01H	1		
Function Code	10H	1		
Starting Data Address	00H (High)	2		
	2EH (Low)	2		
Number of Data	00H (High)	2		
(In word)	03H (Low)	2		
Number of Data	06H	1		
(In word)	0011	1		
Content of first Data	02 (High)	2		
address 40047	58 (Low)	2		
Content of second Data	04H (High)	2		
address 40048	B0H (Low)	2		
Content of third Data	09H (High)	2		
address 40049	60H (Low)	2		
CRC Check Low	A0	1		
CRC Check High	9F	1		

Command Message (Slave)					
Function	Data	Number Of Bytes			
Slave Address	01H	1			
Function Code	10H	1			
Starting Data Address	00H (High) 2EH (Low)	2			
Number of Data (In word)	00H (High) 03H (Low)	2			
CRC Check Low	70	1			
CRC Check High	0D	1			

Second Step : Command For Executing Point To Point Motion

Chapter 9.3.7 command Opode describes register 40125's control code. From the SCL code list shows that for JOG mode, it requires to write data 0x66 to register 40125 to start, and sending 0xD8 to register 40125 to stop.

SCL Command Encoding Table							
Function	SCL	Opcode	Parameter 1	Parameter 2	Parameter 3	Parameter 4	Parameter 5
Start Jogging	CJ	0x96	×	×	×	×	×
Stop Jogging	SJ	0xD8	×	×	×	×	×

Start

Host Sending: 01 06 00 7C 00 96 C8 7C

Drive Reply: 01 06 00 7C 00 96 C8 7C

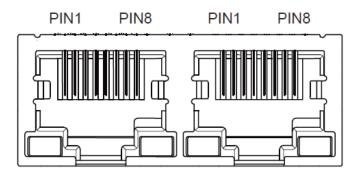
Stop

Host Sending: 01 06 00 7C 00 D8 48 48

Drive Reply: 01 06 00 7C 00 D8 48 48

Starting message :

Command Message (Master)		Command Message (Slave)		ave)	
Function	Data	Number Of Bytes	Function	Data	Number Of Bytes
Slave Address	01H	1	Slave Address	01H	1
Function Code	06H	1	Function Code	06H	1
Starting Data Address	00H (High) 7CH (Low)	2	Starting Data Address	00H (High) 7CH (Low)	2
Content of Data	00 (High) 96 (Low)	2	Content of Data	00 (High) 96 (Low)	2
CRC Check Low	C8	1	CRC Check Low	C8	1
CRC Check High	7C	1	CRC Check High	7C	1


Stopping Message:

Command	Command Message (Master)		Command Message (Slave)		ave)
Function	Data	Number Of Bytes	Function	Data	Number Of Bytes
Slave Address	01H	1	Slave Address	01H	1
Function Code	06H	1	Function Code	06H	1
Starting Data Address	00H (High) 7CH (Low)	2	Starting Data Address	00H (High) 7CH (Low)	2
Content of Data	00 (High) D8 (Low)	2	Content of Data	00 (High) D8 (Low)	2
CRC Check Low	48	1	CRC Check Low	48	1
CRC Check High	48	1	CRC Check High	48	1

9.4 CANopen Communication

For C type drive, port CN6 and CN7 uses standard RJ45 (8p8c) design, customers can use CAT wires to build daisy chain network.

9.4.1 RJ45(8p8c)Pin Definitions

Pin definitions as follows:

PIN	Definition
1	CAN_H
2	CAN_L
3, 7	GND
6	CHGND
4, 5, 8	

9.4.2 CANopen NODE-ID

In the CANopen network, each of the drive needs to have a unique NODE-ID. For M2 series AC servo drive, it allows you to set NODE-ID from 1-112, "0" cannot be used for ID setting.

Parameter P-79 (CO) can set NODE-ID for dives.

9.4.3 CANopen Communication Baud Rate

Parameter P-80 (CB) can set CANopen communication baud rate. For CANopen drive, it supports 8 types of communication baud rate.

Setting value	communication baud rate	Setting value	communication baud rate
0	1M	4	125K
1	800K	5	50K
2	500K	6	25K
3	250K	7	12.5K

For more details, please refer to CANopen user manual.

10.Trouble Shooting

10.1 Drive Alarm List

LED display	Description	Alarm type	Drive status after alarm occurs
r0 lot	Drive over temperature	Fault	Servo off
-02ur	Internal voltage fault	Fault	Servo off
r03uH	Over voltage	Fault	Servo off
r O4HC		Fault	Servo off
rOSLC	Over current	Fault	Servo off
r06rC		Fault	Servo off
гОВНЬ	Bad hall sensor	Fault	Servo off
r09Eb	Encoder error	Fault	Servo off
r IOPL	Position error	Fault	Servo off
r I ILu	Low voltage	Fault	Servo off
r IZou	Velocity limited	Warning	No change to drive's status
	CW limit or CCW limit activated	Warning	No change to drive's status
ר ואננ	CW limit is activated	Warning	No change to drive's status
	CCW limit is activated	Warning	No change to drive's status
r 1661	Current limit	Warning	No change to drive's status
	Communication error	Warning	No change to drive's status
r 183F	Parameter save failed	Warning	No change to drive's status
r ISLP	Phase loss of the main circuit	Warning	No change to drive's status
r20to	STO is activated	Warning	Servo off
r2 IrF	Regeneration failed	Warning	No change to drive's status
-25 ⁰	Low voltage	Warning	No change to drive's status
-2398	Q program is empty	Warning	No change to drive's status
-2499	Move when the drive is disabled.	Warning	No change to drive's status

10.2 Drive alarm reason and solutions

LED display	Description	Alarm type	Processing method
r0 lot	Drive over temperature	Temperature of the heat sink or power device has been risen over the specified temperature. 1. Ambient temperature has risen over the specified temperature. 2. Over-load	 Improve the ambient temperature and cooling condition. Increase the capacity of the driver and motor. Set up longer acceleration/deceleration time. Lower the load
-02ur	Internal voltage fault	Drive internal voltage failure.	 Please check supply power voltage Please replace the drive with a new one, and contact MOONS
r03uH	Over voltage	 Drive DC bus voltage is too high 220V series : 420V 1. Power supply voltage has exceeded the permissible input voltage. 2. Disconnection of the regeneration discharge resistor 3. External regeneration discharge resistor is not appropriate and could not absorb the regeneration energy. 4. Failure 	 Measure the voltage between lines of connector (L1, L2 and L3). 1. Enter correct voltage. 2. Measure the resistance of the internal regeneration resistor. 3. please measure the external resistor, Replace the external resistor if the value is ∞. 4. Please contact MOONS or replace the driver with a new one.
-04HC -05LC -06-C	Over current	 Failure of servo driver (failure of the circuit, IGBT or other components) Short of the motor wire (U, V and W) Burnout of the motor Poor contact of the motor wire. Input pulse frequency is too high. Motor is over load, command output torque is larger than maximum torque, for a long operating time. Poor gain adjustment cause motor vibration, and abnormal nosie. Machine has collided or the load has gotten heavy. Machine has been distorted. Welding of contact of dynamic braking relay due to frequent servo ON/OFF operations. 	 Turn to Servo-ON, while disconnecting the motor. If error occurs immediately, replace with a new driver. Check that the motor wire (U, V and W) is not shorted, and check the branched out wire out of the connector. Make a correct wiring connection. Measure the insulation resistance between motor wires, U, V and W and earth wire. In case of poor insulation, replace the motor. Check the balance of resister between each motor line, and if unbalance is found, replace the motor. Check the loose connectors. If they are, or pulled out, fix them securely. Adjust gain value settings. Measuring brake voltage Check drive and motor encoder and power wires. please contact MOONS.
гОВНЬ	Bad hall sensor	Hall sensor fault	 please check encoder connection please check your drive motor configurations.
г09Eb	Encoder error	Encoder signal fault	please check encoder connection.
r 10PL	Position error	Position error value exceeds the position error range set by parameter P-43 (PF).	 Please check parameter P-43 (PF). Please check drive gain value settings. Please check the load factor of the regeneration resistor, increase the capacity of the driver and the motor, and loosen the deceleration time
r L u	Encoder error	 Power supply voltage is low. Instantaneous power failure has occurred Lack of power capacityPower supply voltage has fallen down due to inrush current at the main power-on. Failure of servo driver (failure of the circuit) 	 Measure the voltage between lines of connector and terminal block L1,L2,L3. 1. Increase the power capacity. Change the power supply. 2. please check connections between L1,L2,L3. Please refer to 4.1.5 drive power connection 3. please cpntact MOONS

r 120u	Position error	Motor rotary velocity exceeds parameter P-19 (VM) setting value.	 Please check motor velocity command if it is within the P-19 (VM) range. 1. Avoid high velocity command 2. Check the command pulse input frequency and division/multiplication ratio. 3. Make a gain adjustment when an overshoot has occurred due to a poor gain adjustment. 4. Make a wiring connection of the encoder as per the wiring diagram.
	CW limit or CCW limit activated	CW and CCW limit is ON	 External limit switch is triggered. Check x5 and x6 limit settings, please refer to chapter7.1.3 Cw/ccw limit.
r 14.L	CW limit is activated	CCW limit triggered	1. External limit switch is triggered.
الدكا م	CCW limit is activated	CW limit triggered	2. Check x5 and x6 limit settings.
r 16CL	Current limit	 Driver's output current exceeds setting value P-18 (CP) 1. Load was heavy and actual torque has exceeded the rated torque and kept running for a long time. 2. Oscillation and hunching action due to poor gain adjustment. Motor vibration, abnormal noise. 3. Machine has collided or the load has gotten heavy. Machine has been distorted. 	 Make a gain re-adjustment. Increase the capacity of the driver and motor. Set up longer acceleration/deceleration time. Lower the load. Check motor wirings for U/V/W as red/yellow/bule.
	Communication error	Drive and host communication error.	Please check wiring connection, and drive's communication address and baud rate setting.
r 183F	Parameter save failed	Saving parameter failure.	 Please try to save again. if problems is not solved, please contact MOONS
r 19LP	Phase loss of the main circuit		
-202o	STO is activated	Safety torque off function is activated. Either or both safety input 1 or 2 is ON.	Please confirm safety input 1 and 2 wiring configuration. Please check Safety sensor setting.
r2 IrF	Regeneration failed	 Regenerative energy has exceeded the capacity of regenerative resistor. 1. Due to the regenerative energy during deceleration caused by a large load inertia, converter voltage has risen, and the voltage is risen further due to the lack of capacity of absorbing this energy of the regeneration discharge resistor. 2. Regenerative energy has not been absorbed in the specified time due to a high motor rotational speed. 	 Internal resistor value is smaller than required, cannot absorb the regeneration energy. Please check external regeneration resistor connections. Reduce rotary velocity and decrease acceleration and deceleration value.
r22u8	Low voltage	 Drive voltage lower than 170VDC 1) Power supply voltage is low. Instantaneous power failure has occurred 2) Lack of power capacityPower supply voltage has fallen down due to inrush current at the main power-on. 3) Failure of servo driver (failure of the circuit) 	 Increase the power capacity. Change the power supply. Please check I1, I2, I3 power connections, please refer to 4.1.5 P1 drive power connection. please contact moons.
3965-	Q program is empty	Drive in Q mode, but Q program is empty.	 Please check Q program. Please check operation mode correction. Please check Q program coding, make sure no faults to stop the program running.
г2Чdd	Move when the drive is disabled.	Motion command is received while motor is disabled.	Please enable the motor, and send the command again.

Revision History

Document History	Date	Remarks
v1.0	2014.10.31	

Disclaimer

The information in this manual was accurate and reliable at the time of its release. MOONS' reserves the right to change the specifications of the product described in this manual without notice at any time.

Trademarks

All marks in this manual are the property of their respective owners

Customer Service

MOONS' is committed to delivering quality customer service and support for all our products. Our goal is to provide our customers with the information and resources so that they are available, without delay, if and when they are needed.

In order to serve in the most effective way, we recommend that you contact your local sales representative for order status and delivery information, product information and literature, and application and field technical assistance. If you are unable to contact your local sales representative for any reason, please use the most relevant of the contact details below:

For technical support, contact: ama-support@moons.com.cn

11. STO function

11.1 Operation and maintenance procedures

11.1.1 The replacement of components

The replacement of components with a limited life is different , Disassembling for inspection and repair should be carried out only by authorized dealers or service company. The Components as following:

Components	Standard replacement cycles /year
motor	Life time varies depending on working conditions.
Drive	Life time varies depending on working conditions.
Connector kit	Life time varies depending on working conditions.
STO terminal	Life time varies depending on working conditions.

11.1.2 Prevent hazardous event

Even while the STO function is working, the following potential safety hazards exist.

Check safety in risk assessment. The actions and constraints necessary to prevent an unsafe and /or reduce the consequences of a hazardous event, including:

1.) The motor may move when external force (e.g. gravity force on vertical axis) is exerted on it. Provide an external brake, etc.,

2.) The STO turns off the current to the motor but does not turn off power to the servo driver and does not isolate it. When starting maintenance service on the servo driver, turn off the driver by using a different disconnecting device.

- 3.) When using STO function, connect equipment conforming to the safety standards.
- 4.) Do not touch the motor axis when working .

11.1.3 Maintenance procedures of STO faults or failures

According to user manual instructions, you can do some maintenance, if the customer find STO safety malfunctions or failure, please contact your local MOONS' customer representative.

11.1.4 Commissioning and testing

The STO Terminal block is MOONS' standard plug, generally do not pull out from the drive.

For connection to the host controller control the STO function, please use the appropriate connector or consulting MOONS' customer representative.

11.2. The implementation of Safety Functional

11.2.1 Safety Functional Specification

During the normally operation, if inspection the violation of limits, the STO off, the drive give alarm signal.

11.2.1.1 Safety input Signal

STO Safety input Signal as following:

Signal	Symbol	Pin No.	contents	Control mode	
Safety input 1	SF1+	1	When SF1 input turns off, the STO	nction activate Compatible all control	
	SF-	2	function activate		
Safety input 2	SF1+	3	When SF2 input turns off, the STO		
	SF-	5	function activate		

Note: When safety input SF1 or SF2 is OFF, STO function activate.

11.2.1.2 External device monitor (EDM)output signal

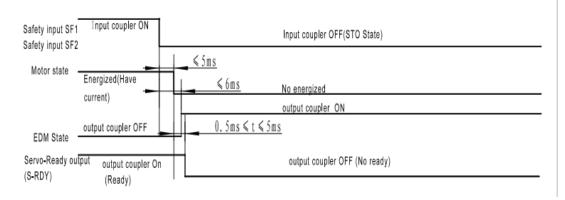
The monitor output signal is used by the external device to monitor the state of the safety input signal. Connect the monitor output to the external device monitor terminal of the safety devices such as safety controller and safety sensor.

Signal	Symbol	Pin No.	contents	Control mode
EDM Output	EDM+	6	When STO function work, The monitor	Compatible all control
	EDM-	4	output signal EDM may used	mode

11.2.1.2 +5VDC Source

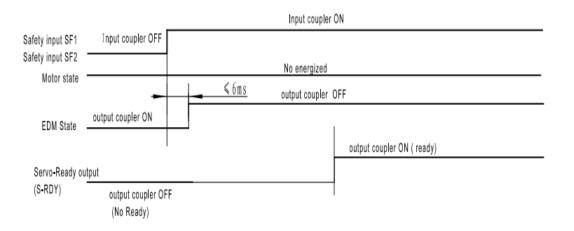
STO Terminal block is kit, if the STO unused, keep the STO terminal block connect the STO port, The SF1, SF2 connect the internal +5VDC and DGND:

Signal	Symbol	Pin No.	contents	Control mode	
Digit	DGND	7,8	DGND	Compatible all control mode	
+5V	+5VDC	9,10	+5VDC output	Compatible all control mode	


11.2.2 The fault reaction function

The safe torque off (STO) function is a safety function that shuts the motor current and turns off motor output torque by forcibly turning off the driving signal of the servo driver internal power transistor

11.2.3 Response time


The response time of each safety related function and of the associated fault reaction function, should accord with the timing chart as following:

11.2.3.1 Operating timing chart for safety status

11.2.3.2 Return timing from safety state:

11.2.4 Safety function activated or prohibit

In high demand or continuous operation mode the STO function is activated or disabled state

11.2.5 STO function as the highest priority.

Drive with overload, overheating, over-current, over-voltage, IPM abnormal protection function, but STO function as the highest priority.

11.3 The safety integrity information

The safety integrity information for each safety function, including, the SIL capability and the PFH value. The SIL/SIL capability 2 and PFH=1.41e-09/H

11.4 The environmental and operating conditions for safety function

11.4.1 The environmental and operating conditions

Safety function is intended to beused as following:

Item	Conditions
Ambient temperature	0-50℃(free from freezing)
Ambient humidity	20%~85%(free from condensation)
Storage humidity	93%(free from condensation)
Storage temperature	-20℃~65℃
Altitude	Lower than 1000m
Vibration	1g, 10-150HZ(Do not continuously use the driver for along time at
VIDIATION	the resonance point.)
EMC	Refer to standard EN61800-3 C2 category

Note: Extreme temperatures are permissible only for short period such as during transportation.

11.5. Safety function constraints

11.5.1 Failure rate

The failure rates is calculation and estimated under the ambient 50℃.

11.5.2 Mission time and proof test

proof test intervals: 20 years, as appropriate

miss time: 20H each day, as appropriate

11.5.3 Testing, calibration or maintenance requirements

The testing, calibration or maintenance requirements need profession person.

11.5.4 Avoiding the systematic failure

- 1.) Be sure the STO work in reasonable environment
- 2.) Be sure the machine brake no loosen
- 3.) Be sure the motor work normally
- 4.) Make sure safety input cables status

11.5.5 SIL capability

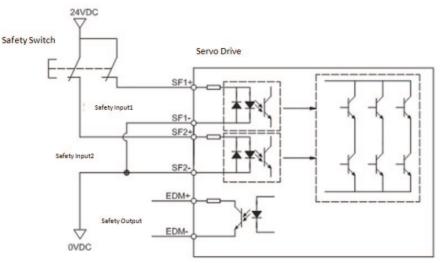
The SIL capability of STO is 2

11.5.6 Identify the hardware and software configuration

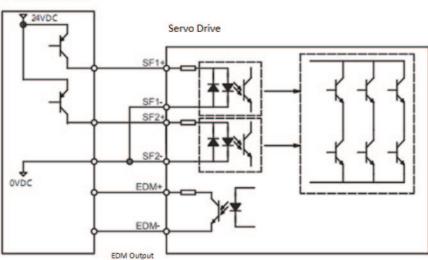
Identify the hardware: When STO function work, drive hardware circuit is triggered, forced to shut off the power transistor drive internal work to prevent motor rotating, and the drive is disable state. STO is a kind of hardware level safety protection devices, to protect the safety of person and equipment in an emergency

Identify the software: When STO Function active, the PWM drive signal is shut down by the hardware to shut off the motor current, at the same time, the drive LED displays alarm code **recto**.

When failure occurrence, you may check the two safety input wiring and terminal block if Loosen or damaged, or contact MOONS'.



11.6 The installation and commissioning guidance


11.6.1 Installation

We have been making the best effort to ensure the highest quality .however application of exceptionally large external noise disturbance and EMC disturbance may result in unexpected action. It is highly recommended that you make a fail-safe design and secure the safety in the operative range. For the drive installation .You may refer to the 3.4 chapter. STO safety function connect as following.

11.6.1.1 Example of connection to safety switch

11.6.1.2 Example of connection to safety Light Curtain

Note: EDM output, user can connect the power to 24VDC(max), 100mA(max), limit resistance is necessary.

Safety Light Curtain

11.6.2 commissioning

- 1. Be sure the grounding terminal or grounding wire provided is fine. To avoid electric shock and malfunction.
- 2. Please use the STO safety-related function in Vibration-free place or the limited environment.

11.7. The requirements for configuration test of safety functions,

11.7.1 General and normal running condition, annual average is 30°C, Perform the daily and periodical inspection as per the items below.

Туре	Cycles	Items to be inspected		
		1. Make sure the ambient temperature and humidity		
		2. Main circuit voltage		
Daily	doilu	3. Damage of the cables		
inspection	daily	4. Pinching of foreign object at the load		
		5. Loose connection or misalignment between the motor		
		and machine or equipment.		
		1. Loose tightening		
	1 year	2. Trace of overheat		
Annual inspection		3. Damage to STO terminal block		
		4. SF1 safety input circuit function if work normal		
		5. SF2 safety input circuit function if work normal		

11.7.2 Safety relevant parameters and their values

Parameter	Actual value
PFH	1.41e-09/H
MTTFd	High
CCF (for EN ISO 13849)	95
CCF (for IEC 61508)	49
Category	3
DC	Low
SFF	67.645%
HFT	1
Beta Factor	2%
PL	d
The SIL/SIL capability	2

11.7.3 The test procedures of safety functions

Logical relation between safety input signal and EDM output signal

Signal	Symbol	Photocoupler logic				
Safety input	SF1	ON	ON	OFF	OFF	
	SF2	ON	OFF	ON	OFF	
EDM output	EDM	OFF	OFF	OFF	ON	

- 1. Safety input SF1, SF2 are OFF, and the photocoupler in EDM output circuit is ON.
- Monitoring the logics (all 4 states) of photocoupler shown in the table above, the external device can determine the status (normal or abnormal) of safety input circuit and EDM output circuit., make sure the safety function normal.

11.7.4 The description of the safety related components

1.) The safety related components that will be used in the application, including software versions which including STO function abnormal alarm.

2.) To avoid EMC disturbance, the drive need to connect external EMI filter, the model please contact the manufacturer to consult.

3.) STO Terminal block is important in application.

Appendix

Appendix 1: LED Character Reference

	5	3	ч	S	6	7	8	9	0
1	2	3	4	5	6	7	8	9	10
R	Ь	C	Ь	ε	۶	J	Н	I	J
A	В	С	D	E	F	G	н	I	J
ก	L	Π	Π	O	٩	9	Г		٤
К	L	М	N	0	Р	Q	R	S	Т
IJ	U	ម	5	Ч	٦				
U	V	W	Х	Y	Z				

Headquarters SHANGHAI AMP&MOONS' AUTOMATION CO.,LTD.

No. 168 Mingjia Road Industrial Park North Minhang District Shanghai 201107, P.R. China Tel: +86(0)21–5263 4688 Fax: +86(0)21–6296 8682 Web: www.moonsindustries.com E-mail: ama-info@moons.com.cn

- Shenzhen Branch Office

 Room 2209, 22/F, Kerry Center,No. 2008 Renminnan Road

 Shenzhen 518001 P. R.China

 Tel: +86 (0)755–2547 2080

 Fax: +86 (0)755–2547 2081
- Qingdao Branch Office
 Room 1012, Zhuoyue Tower, No.16 Fengcheng Road, Shibei District, Qingdao 266000 P. R.China Tel: +86 (0)532–8096 9935

 Fax: +86 (0)532–8091 9938

Cheng Du Branch Office

Room 1917, Western Tower, 19, 4th Section of South People Road, Wuhou District, Chengdu 610041, P.R. China Tel: +86 (0)28 85268102 Fax:+86 (0)28 85268103

Ningbo Branch Office

Room 309, Block B, Taifu Plaza,No. 565 Jiangjia Road Jiangdong District Ningbo, 315040 P.R. China Tel: +86 (0) 574–8705 2739 Fax: +86 (0) 574–8705 2365

MOONS' INDUSTRIES (AMERICA), INC. 1113 North Prospect Avenue, Itasca, IL 60143 USA

Tel: +1 630 833 5940 Fax: +1 630 833 5946

- APPLIED MOTION PRODUCTS, INC. 404 Westridge Dr. Watsonville, CA 95076, USA Tel: +1 831 761 6555 +1 800 5251609
- LIN ENGINEERING, INC. 16245 Vineyard Blvd., Morgan Hill, CA 95037 Tel: +1 408 9190200 Fax:+1 408 9190201

Beijing Branch Office

Room 816, Tower B, China Electronics Plaza, 3 Danling Street, Haidian District, Beijing 100080, P.R. China Tel: +86 (0)10 58753312 Fax:+86 (0)10 58752279

Wuhan Branch Office

Room 3001, World Trade Tower, No.686 Jiefang Avenue, Jianghan District, Wuhan 430022 P.R.China Tel: +86 (0)27–8544 8742 Fax: +86 (0)27–8544 8355

Xi'an Branch Office

Room 1006, Tower D, Wangzuo International City, 1 Tangyan Road, Xi'an 710065, P.R. China Tel: +86 (0)29 81870400 Fax:+86 (0)29 81870340

Guangzhou Branch Office

Room 4006, Tower B, China Shine Plaza, 9 Linhe Xi Road, Tianhe District, Guangzhou 510610, P.R. China Tel: +86 (0)20 38010153 Fax:+86 (0)20 38103661

MOONS' INDUSTRIES (SOUTH-EAST ASIA) PTE LTD.

33 Ubi Avenue 3 #08-23 Vertex Singapore 408868 Tel: +65 6634 1198 Fax: +65 6634 1138

MOONS' INDUSTRIES EUROPE S.R.L.

Via Torri Bianche n.1 20871 Vimercate (MB) Italy Tel: +39 039 626 0521 Fax: +39 039 963 1409

MOONS' INDUSTRIES JAPAN CO., LTD

Room 601, 6F, Shin Yokohama Koushin Building, 2-12-1, Shin-Yokohama, Kohoku-ku, Yokohama, Kanagawa, 222-0033, Janpan Tel: +81 (0)45 4755788 Fax: +81 (0)45 4755787

http://www.moonsindustries.com E-mail: ama-info@moons.com.cn

MOONS' moving in better ways

• All the specifications, technical parameters of the products provided in this catalog are for reference only, subject to change without notice. For the latest details, please contact our sales department.