
167

BELT DRIVE

H INDEPENDENT INSTALLATION POSITION

OMEGA SYSTEM LIFTING SYSTEM

Function:

This unit consists of a rectangular aluminium profile with 2 integrated rail guidess. The carriage is moved by a belt drive. An innovation is that the toothed belt is diverted within a drive block positioned centrically. The result is an enormous compactness with regard to the overall system length. The toothed drive pulley has a coupling claw in the standard version. Belt tension can be readjusted by a simple screw adjustment device in the carriage. This device can also be used for symmetrical adjustment of two or more linear units running parallel. The openings of the guide body are sealed with 3 stainless steel cover bands to protect the guide from splash water and dust. Alternatively, the opening can also delivered without cover bands.

Fitting position: **Carriage mounting:** As required. Max. length 6.000 mm without joints.

Carriage support:

Unit mounting: Belt type:

By T-slots and mounting sets. The linear axis can be combined with any T-slot profile.

HTD with steel reinforcement, no backlash when changing direction, repeatability \pm 0,1 mm.

In the standard version, the carriage runs on 4 runner blocks which can be serviced at a central servicing position. For

longer carriages the number of runner blocks can be increased.

Size nermitted dyn Forces*

0.2 s (N) Geometrical moments of inertia of aluminium profile

Elastic modulus N/mm

Forces and torques
Fz Mz Mz Fx Fy My

pe	rmittea ayn.	rorces*		5000 KM	- 1	10000 Km	5000 KIII	TUUUU KIII	
	F _x (N)			1900	T	1800	4000	3800	
	5570		3900	15600	11080				
	F _z (N)			7050		5020	20600	14600	
	M _x (Nm)			358	358		1285	915	
	M _v (Nm)			369		262	1375	980	
	364	П	258	1345	960				
All forces and toro	ues related t	to the follow	wing:			•			
existing values	Fy	Fz		+	Mz	~1			
table values	Fy _{dyn}	Fz _{dyn}	Mx _{dyn}	My _{dyn}	Mz _{dy}	n			
No-load torque									
Nm without cover bands					1,	5	2,0		
Nm with cover bands					2,	1	4		
Speed							•		
-	(m/s) max	X			5			5	
Tensile force				•					
							1		

2090

21,32x10⁵

123,36x10⁵

70000

For life-time calculation use our homepage.

* referred to life-time

4300

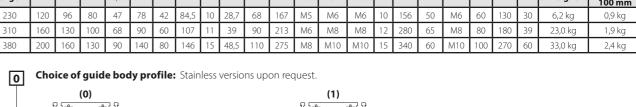
4,81 x109

26,0 x10⁶

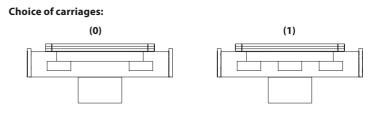
70000

= force = pulley action perimeter Si = safety factor 1, 2 ... 2M_s = no-load torque = rpm pulley (min-1) M = driving torque
P = motor power

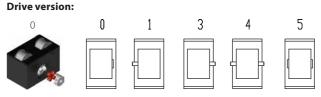
= motor power


Deflection: E*I*192 f = deflectionF = loadL = free length E = elastic modulus 70000 (N/mm^2) I = second moment of area

V = Q + 100 mm


W = servicing position *For slide nuts refer to chapter 2.2 page 2

Increasing the carriage length will increase the basic length by the same amount.


Size	:	Basic length	А	В	С	D -0,05	E	F	G	н	-	J	К	M for	N for	O for	Р	Q	R	Т	U	х	Υ	Basic weight	Weight per 100 mm
DSZS	120	230	120	96	80	47	78	42	84,5	10	28,7	68	167	M5	M6	M6	10	156	50	M6	60	130	30	6,2 kg	0,9 kg
DSZS	160	310	160	130	100	68	90	60	107	11	39	90	213	M6	M8	M8	12	280	65	M8	80	180	39	23,0 kg	1,9 kg
DSZS 2	200	380	200	160	130	90	140	80	146	15	48,5	110	275	M8	M10	M10	15	340	60	M10	100	270	60	33,0 kg	2,4 kg

Size	Versi	ion 0	Version 1					
5.20	Q	L	Q	L				
120	156	230	156	230				
160	280	310	280	310				
200	340	380	380	420				

5 is as 0, but with coupling claws on both sides.

The standard version is supplied without shaft. A shaft can be retrofitted by inserting it into the pulley bore and securing it with 2 locking rings or tension sets (size 200).

Belt table:

Code No. Size		Size	Belt	mm/rev.	Number of teeth		
0	4	120	5M 25	130	26		
0	7	160	8M 30	192	24		
0	9	200	8M 50	256	32		

Shaft dimensions / Coupling claw:	
-----------------------------------	--

Size	Shaft ø h6 x length	Key	Coupling
120	14 x 35	5x5x28	14
160	18 x 45	6x6x40	19
200	22 x 45	6х6х40	24

DSZS | 160 | 1 | 0 | 0 | 0 | 7 | 1 | 1500 | Basic length + stroke = total length

0

Sample ordering code:

DSZS160 with internal profile and cover bands, standard carriage, coupling claw on one side, 1190 mm stroke.

