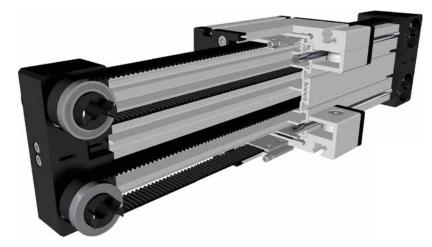
Linear system **ELZD 60 (S) W**


BELT DRIVE WITH TWO SEPARATELY DRIVEN CARRIAGES

KG HIGHER PROFILE STABILITY

✓ INDEPENDENT CARRIAGES

KG HIGHER FORCE FIXTURE

Function:

The guide body consists of an aluminium square profile with lateral, parallel, form-fit, internal hardened steel rods. Two carriages, which are driven individually by a timing belt, move along the guide body independently of one another. Due to the rectangular profile high torques and loads can be taken up. In addition, a very high stability and low deflection are ensured for long axis systems. The belt tension can be easily readjusted via a tensioning device within the carriage. This device also helps to adjust the symmetry of the carriages in applications where two parallel linear units are used.

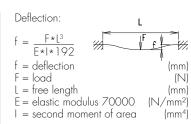
Fitting position: As required. Max. length 3.000 mm without joints.

Carriage mounting: By T-slots.

Unit mounting: By T-slots or mounting sets.

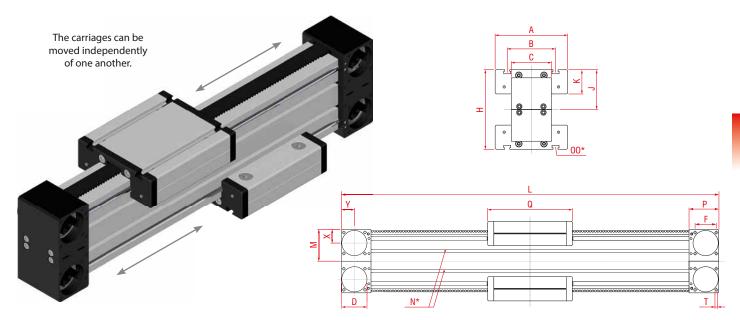
Belt type: HTD with steel reinforcement, no backlash when changing direction, repeatability: ± 0,1 mm.

Forces and torques	Size	6	50	60 S				
	Forces/Torques	static	dynamic	static	dynamic			
Fz↑	F _x (N)	894	800	894	800			
M ₇	F _v (N)	3000	2000	4100	3100			
	$F_z(N)$	1700	1100	2160	1600			
Mx	M _x (Nm)	67	43	88	65			
''^ Fx	M _v (Nm)	90	70	190	140			
	M _z (Nm)	120	100	230	170			
Fy My	All forces and torques relate to the following:							
My	Mx + My + Mz ≤1							
existing values $\frac{Fy}{Fy_{dyn}} + \frac{Fz}{Fz_{dyn}} + \frac{Mx}{Mx_{dyn}} + \frac{My}{My_{dyn}} + \frac{Mz}{Mz_{dyn}}$								
	No-load torque							
	Nm	C),6	(0,7			
	Speed							
	(m/s) max		5		7			
	Tensile force							
	permanent (N)		900		900			
	0,2 s (N)		1000		1000			
	Geometrical moments of inertia of aluminium profile							
	l _x mm⁴ 2,8 >			2,8	2,8 x 10 ⁶			
	l _v mm⁴		9,6 x 10⁵		9,6 x 10⁵			
	E-Modulus N/mm²	70	000	70	0000			

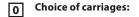

For life-time calculation of rollers use our homepage.

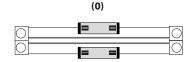
$$M_{a} = \frac{F * P * S_{i}}{2000 * \pi} + M_{r}$$

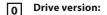
$$P_a = \frac{M_a * n}{9550}$$


 $\begin{array}{llll} F &=& force & (N) \\ P &=& pulley \ action \ perimeter & (mm) \\ Si &=& safety \ factor \ 1,2 \dots 2 \\ M_n &=& no-load \ torque & (Nm) \\ n &=& rpm \ pulley & (min^{-1}) \\ M_a &=& driving \ torque & (Nm) \\ P_a &=& motor \ power & (KW) \end{array}$

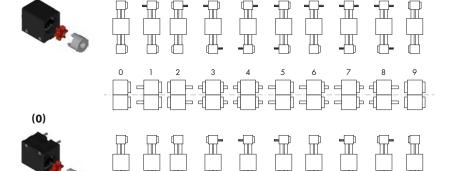
*For slide nuts refer to chapter 2.2 page 2


0


Increasing the carriage length will increase the basic length by the same amount.


Size	Basic length L	А	В	С	D - 0,05	F	н	J	К	м	N for	OO for	Р	Q	Т	х	Υ	Basic weight	Weight per 100 mm
ELZD 60 W	290	144	96	80	47	42	158	79	48	71	M5	M8	59	168	M6	27	26	9,6 kg	1,0 kg
ELZD 60S W	315	170	108	80	47	42	166	83	52	71	M5	M8	59	194	M6	27	26	11,6 kg	1,0 kg

Choice of guide body profile:


- (0) Standard (2) corrosion-protected guide rods and screws
- (4) expanded corrosion-protected version (depending on the availability of components)

(0)

Top drive version:

Version 9 is the same as 0, but with double sided coupling claw.

Mirror plane

Drive version (top and bottom identical)

Bottom drive version:

Version 9 is the same as 0, but with double sided coupling claw.

Belt table:

1 0 0 0 0 4 1

Code No.		Size	Belt	mm/rev.	Number of teeth	
0	4	60 (S)	5M25	130	26	

Basic length + stroke = total length

Shaft dimensions / Coupling claw:

Size	Shaft ø h6 x length	Key	Coupling		
60 (S)	14 x 35	5x5x28	14		

For combination kits and connecting elements refer to chapter 2.2

Sample ordering code:

ELZD 60 W

ELZD 60 W, standard body profile, standard carriage, coupling claw on one side, 1210 mm stroke

1500

