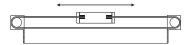
Linear system MLZ 60 (S) W


BELT DRIVE

H INDEPENDENT INSTALLATION POSITION

KG HIGHER PROFILE STABILITY

KG HIGHER FORCE FIXTURE

□ LONG TRAVERSE PATH

Function:

The guide body consists of an aluminium square profile with lateral, parallel, form-fit, internal hardened steel rods. The guide carriage, which is driven along the shafts by a timing belt, moves on the guide body with internal linear ball bearings that are adjustable free of play. The advantage of this system: The timing belt is guided within the profile, so that the system is independent of the mounting position. Due to the rectangular profile high torques and loads can be taken up. In addition, a very high stability and low deflection are ensured for long axis systems. The belt tension can be easily readjusted via a tensioning device within the carriage. This device also helps to adjust the symmetry of the carriages in applications where two parallel linear units are used.

Size

Fitting position: As required, max. length 6.000 mm without joints.

Carriage mounting: By T-slots.

Unit mounting: By T-slots or tapped holes in the bearing block, mounting sets.

HTD with steel reinforcement, no backlash when changing direction, repeatability: \pm 0,1 mm. **Belt type:**

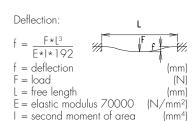
Force	s/Torques	static	dynamic	static	dynamic	
	F _x (N)	894	800	894	800	
	F _v (N)	3000	2000	4100	3100	
	$F_z(N)$	1700	1100	2160	1600	
M	(Nm)	67	43	88	65	
M	(Nm)	90	70	190	140	
N	I _z (Nm)	120	100	230	170	
All forces and toro	ues relate to the follov	ving:				
existing values table values	$\frac{Fy}{Fy_{dyn}}$ + $\frac{Fz}{Fz_{dyn}}$	+ $\frac{Mx}{Mx_{dyn}}$ +	$\frac{My}{My_{dyn}}$ + $\frac{M}{M}$	MZ Z _{dyn} ≤1		
No-load torque						
_	Nm	0	.6	0	.7	

60

60 S

No-load torque		
Nm	0,6	0,7
Speed		
(m/s) max	5	7
Tensile force		
permanent (N)	900	900
0,2 s (N)	1000	1000
Geometrical moments of inertia of alun	ninium profile	
I _x mm⁴	2,8 x 10 ⁶	2,8 x 10 ⁶
l _y mm⁴	9,6 x 10⁵	9,6 x 10⁵
E-Modulus N/mm²	70000	70000

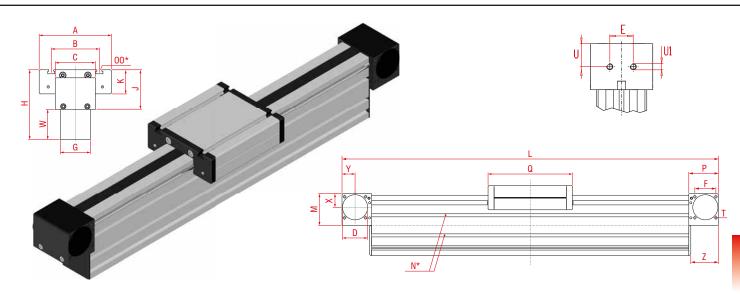
For life-time calculation of rollers use our homepage.


Driving torque:

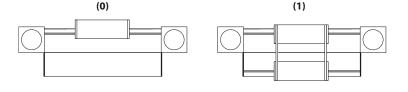
$$M_a = \frac{F * P * S_i}{2000 * \pi} + M_n$$

$$P_a = \frac{M_a * n}{9550}$$

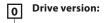
6

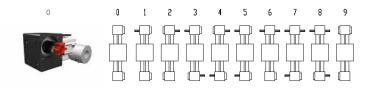

= force (N) = pulley action perimeter (mm) = safety factor 1,2 ... 2 $M_n = \text{no-load torque}$ (Nm)= rpm pulley (min-1) $M_a = driving torque$ (Nm) (KW) = motor power

*For slide nuts refer to chapter 2.2 page 2


Increasing the carriage length will increase the basic length by the same amount.

Size	Basic length L	А	В	с	D - 0,05	E	F	G	н	J	к	М	N for	OO for	Р	Q	т	U	U1	w	х	Υ	z	Basic weight	Weight per 100 mm
MLZ 60 W	290	144	96	80	47	30	42	60	139	79	48	63	M5	M8	59	168	M6	29,5	M8	60	27	26	55	5,2 kg	0,8 kg
MLZ 60S W	315	170	108	80	47	30	42	60	143	83	52	63	M5	M8	59	194	Мб	29,5	M8	60	27	26	55	6,2 kg	0,8 kg


Choice of guide body profile:


- (0) Standard (2) corrosion-protected guide rods and screws
- (4) expanded corrosion-protected version (depending on the availability of components)

Choice of carriages: 0

Size	Version 1						
Size	Q	L					
60	184	306					
60 S	214	336					

Version 9 is the same as 0, but with double sided coupling claw.

The standard version is supplied without shaft.

Belt table

	Number o	mm/rev.	Belt	Size	Code No.	
	26	130	5M25	60 (S)	4	0
1	26	130	5M25	60 (S)	4	<u> </u>

* effective toothed belt width

Shaft dimensions / Coupling claw

Size	Shaft ø h6 x length	Key	Coupling			
60 (S)	14 x 35	5x5x28	14			

MLZ | 60 W | 1 | 0 | 0 | 0 | 0 | 4 | 1 | 1500 $Basic\ length + stroke = total\ length$ For combination kits and connecting elements refer to chapter 2.2

Sample ordering code:

MLZ 60 W, standard body profile, standard carriage, coupling claw on one side, 1210 mm stroke

