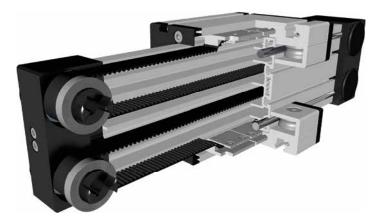
Linear system MLZD 60 (S) W

BELT DRIVE - TWO SEPARATELY DRIVEN CARRIAGES


KG HIGHER PROFILE STABILITY

INDEPENDENT CARRIAGES

KG HIGHER FORCE FIXTURE

INDEPENDENT INSTALLATION POSITION

Function:

The guide body consists of an aluminium square profile with lateral, parallel, form-fit, internal hardened steel rods. Two guide carriages, each with its own drive, move along the guide body. The timing belt is guided within the profile, so that it is independent of the mounting position. Due to the high rectangular profile high torques and loads can be taken up. In addition, a very high stability is ensured for long axis systems. The toothed pulleys have maintenance-free ball bearings. The belt tension can be easily readjusted via a tensioning device within the carriage. This device also helps to adjust the symmetry of the carriages in applications where two parallel linear units are used.

Fitting position: As required, max. length 6.000 mm without joints.

Carriage mounting:

By T-slots or tapped holes in the bearing block, mounting sets. **Unit mounting:**

HTD with steel reinforcement, no backlash when changing direction, repeatability: \pm 0,1 mm. Belt type:

Forces and torques	Size	
	Forces/Torques	S
Fz∱	F _x (N)	,
MZ MZ	F _v (N)	3
· · · · · · · · · · · · · · · · · · ·	$F_z(N)$	1
	M _x (Nm)	
×	X M _v (Nm)	
	M _z (Nm)	
y My	All forces and torques relate to the follow	ving:
My	existing values Fy Fz	+ _
,	table values Fy _{dyn} Fz _{dyn}	M:
	No-load torque	
	Nm	
	Speed	
	(m/s) max	
	Tensile force	
	permanent (N)	
	0,2 s (N)	
	Geometrical moments of inertia of alumi	inium
	I _x mm⁴	

Force	s/Torques		static	dynamic	static	static dynamic			
	F _x (N)		894	800	894	800			
	F _v (N)		3000	2000	4100	3100			
	F _z (N)		1700	1100	2160	1600			
N	l _x (Nm)		67	43	88	65			
N	l _v (Nm)		90	70	190	140			
N	l _z (Nm)		120	100	230	170			
All forces and toro	ques relate t	to the follov	ving:						
existing values	Fy	. Fz	. Mx	My .	Mz _1				
existing values table values	Fy _{dyn}	Fz _{dyn}	Mx _{dyn}	My_{dyn} N	— ≤I 1z _{dyn}				
No-load torque									
	Nm			0,6		0,7			
Speed									
(m	/s) max			5		7			
Tensile force									
permanent (N)				900	900				
0,2 s (N)				1000	1000				
Geometrical mom	ents of iner	tia of alumi	inium profile						
l _x mm⁴			2,	8 x 10 ⁶	2,8 x 10 ⁶				
I,	, mm⁴		9,	5 x 10⁵	9,6 x 10⁵				
E-Mod	ulus N/mm²		7	0000	70000				

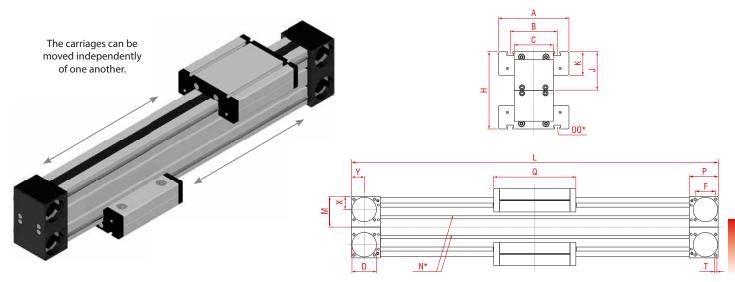
For life-time calculation of rollers use our homepage.

Driving torque:

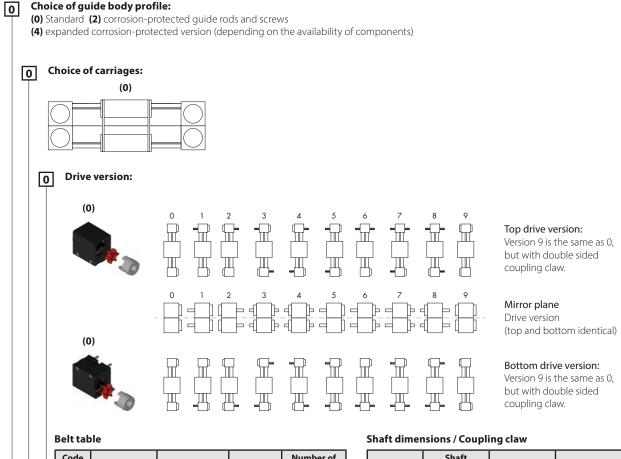
$$M_a = \frac{F * P * S_i}{2000 * \pi} + M_n$$

$$P_a = \frac{M_a * n}{9550}$$

8


= force (N) = pulley action perimeter (mm) = safety factor 1,2 ... 2 = no-load torque (Nm)= rpm pulley (min-1) $M_a = driving torque$ (Nm) (KW) = motor power

Deflection:	L
$f = \frac{F * L^3}{E * I * 192}$	₩ f ₩
f = deflection	" (mm
F = load	, (N
L = free length	(mm
E = elastic modulus 70000	(N/mm^2)
I = second moment of area	/mm²



*For slide nuts refer to chapter 2.2 page 2

Increasing the carriage length will increase the basic length by the same amount.

Size	Basic length L	А	В	С	D - 0,05	F	н	J	к	М	N for	OO for	Р	Q	т	х	Υ	Basic weight	Weight per 100 mm
MLZD 60 W	290	144	96	80	47	42	158	79	48	71	M5	M8	59	168	М6	27	26	9,3 kg	1,0 kg
MLZD 60S W	315	170	108	80	47	42	166	83	52	71	M5	M8	59	194	M6	27	26	11,3 kg	1,0 kg

Choice of guide body profile:

Code No.		Size	Belt	mm/rev.	Number of teeth		
0	4	60 (S)	5M25	130	26		

* effective toothed belt width

 $Basic\ length + stroke = total\ length$

Size	Shaft ø h6 x length	Key	Coupling		
60 (S)	14 x 35	5x5x28	14		

For combination kits and connecting elements refer to chapter 2.2

Sample ordering code:

MLZD 60 W 1 0 0 0 0 4 1

MLZD 60 W, standard body profile, standard carriage, coupling claw on one side, 1210 mm stroke

1500

