TA26

series

Product Segments

- Comfort Motion

TiMOTION's TA26 series electric linear actuator is designed for furniture applications such as recliners or lift chairs. This linear actuator is designed to function as a direct cut system, eliminating the need for a control box, offering a straightforward and cost effective alternative to complex electric actuation systems.

General Features

Max. load
Max. speed at max. load
Max. speed at no load
Retracted length
Certificate
Output signals
Voltage
Color
Operational temperature range

4,000N (push); 2,000N (pull)
$6.1 \mathrm{~mm} / \mathrm{s}$
$24 \mathrm{~mm} / \mathrm{s}$
\geq Stroke +120 mm
UL962
Hall sensor(s)
12/24V DC; 24V DC (PTC)
Black
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$

Drawing

Standard Dimensions
(mm)

Load and Speed

CODE	Load (N)		Self Locking Force (N)		Typical Current (A)		Typical Speed (mm/s)	
	Push	Pull			No Load 32V DC	With Load 24V DC	No Load 32V DC	With Load 24V DC
Motor Speed (3800RPM, duty cycle 10\%)								
A	4000	2000	3000	4000	1.0	5.0	12.0	6.1
B	3000	2000	500	2500	1.0	4.5	18.0	7.5
C	2000	2000	350	1500	1.0	4.0	24.0	12.8

Note

1 Please refer to the approved drawing for the final authentic value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 Operational temperature range: $-25^{\circ} \mathrm{C} \sim+65^{\circ} \mathrm{C}$
4 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC; speed will be similar for both voltages.

5 The current \& speed in table are tested when the actuator is extending under push load.
6 The current \& speed in table and diagram are tested with TiMOTION control boxes, and there will be around 10% tolerance depending on different models of the control box. (Under no load condition, the voltage is around 32V DC. At rated load, the voltage output will be around 24 V DC)

7 The current \& speed in table and diagram are tested with a stable 24V DC power supply.

Motor Speed (3800RPM)

Speed vs. Load

Current vs. Load

TA26

Voltage	$1=12 \mathrm{~V}$	$2=24 \mathrm{~V}$	$5=24 \mathrm{~V}, \mathrm{PTC}$
Load and Speed	See page 2		

Stroke (mm) See page 5

Retracted Length See page 5

(mm)
Rear Attachment $\quad 1=$ Plastic, clevis U, slot 6.2, depth 16.0, hole 10.2
$(\mathbf{m m})$

See page 5

Front Attachment	$1=$ Plastic, no slot, hole 8.2	$4=$ Aluminum casting, clevis U, slot 6.2 , depth 17.0 , hole
$(\mathbf{m m})$	$2=$ Plastic, no slot, hole 10.2	10.2
See page 5	$3=$ Aluminum casting, clevis U, slot 6.2 , depth 17.0, hole	
	8.2	

Special Functions $\quad 0=$ Without
for Spindle Sub-

Assembly

Functions for	$1=$ Two switches at full retracted / extended positions to cut current
Limit Switches	$2=$ Two switches at full retracted / extended positions to cut current +3 rd LS to send signal
See page 6	3 = Two switches at full retracted / extended positions to send signal
	$4=$ Two switches at full retracted / extended positions to send signal + 3rd LS to send signal
Output Signals	$0=$ Without

Connector	1 = DIN 6P, 90° plug		$\mathrm{K}=1$ motor direct cut system	
See page 6	2 = Tinned leads		$J=1$ motor direct cut system, with anti-pull cover	
	$3=$ Small 01P, plug		L = 1+1, 2 motors direct cut system	
	$\mathrm{P}=$ Molex 8P, 90° plug, without anti-clip		S = 1+1, 2 motors direct cut system, with anti-pull cover	
Cable Length (mm)	$0=$ Straight, 100	$4=$ Straight, 1250	$\begin{aligned} 8 & =\text { Curly, } 400 \\ K & =\text { Direct cut operation } \\ & \text { with single actuator. } \\ & \text { See page } 6 \end{aligned}$	L = Direct cut operation with two actuators. See page 6
	1 = Straight, 500	$5=$ Straight, 1500		
	$2=$ Straight, 750	6 = Straight, 2000		
	3 = Straight, 1000	7 = Curly, 200		

TA26 Ordering Key Appendix

Retracted Length (mm)

1. Calculate $A+B=Y$
2. Retracted length needs to \geq Stroke $+Y$

A. Front Attach.

$\mathbf{1 , 2}$	+120
$\mathbf{3 , 4}$	+150

B. Stroke (mm)

0~150
151~200
201~250 +5
251~300 +10

301~350 +15
351~400 +20

Note

1 For stroke over $200 \mathrm{~mm},+5 \mathrm{~mm}$ for each increment of 50 mm stroke

Rear Attachment (mm)

1 = Plastic, clevis U, slot 6.2 , depth
16.0, hole 10.2

Front Attachment (mm)

1 = Plastic, no slot, hole 8.2
2 = Plastic, no slot, hole 10.2
3 = Aluminum casting, clevis U, slot 6.2, depth 17.0, hole 8.2

4 = Aluminum casting, clevis U, slot 6.2 , depth 17.0, hole 10.2

$\varnothing 8.2$

ø10.2

กั

TA26 Ordering Key Appendix

Functions for Limit Switches

Wire Definitions

CODE	Pin					
	1 (Green)	2 (Red)	\bigcirc (White)	4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch

Connector

$1=$ DIN 6P, 90° plug

$K=1$ motor direct cut system
$L=1+1,2$ motors direct cut system

$2=$ Tinned leads

$P=$ Molex $8 P, 90^{\circ}$ plug, without anti-clip

$J=1$ motor direct cut system, with anti-pull cover

$S=1+1,2$ motors direct cut system, with anti-pull cover

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application. TiMOTION products are subject to change without prior notice.

