TA41

series

Product Segments

- Care Motion

TiMOTION's TA41 is the ideal linear actuator for medical applications, particularly for dentist chairs and electric wheelchairs. Its physical design is similar to the TA7, yet without the IP rating. The TA41 provides multiple options of cable exits and it supports a maximum of 800 Kg force in push.

General Features

Max. load
Max. speed at max. load
Max. speed at no load
Retracted length
Stroke
Output signals
Voltage
Color
Operational temperature range

8,000N (push) ; 4,000N (pull)
$4.3 \mathrm{~mm} / \mathrm{s}$
$39 \mathrm{~mm} / \mathrm{s}$
\geq Stroke +163 mm
25~1000mm
Hall sensors, Reed sensor
12/24/36V DC
Black, grey
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$

Suitable for dentist chairs and wheelchairs

Drawing

Standard Dimensions
(mm)

Note

1 The above dimension is with motor cover.

Load and Speed

CODE	Load (N)		Self Locking	Typical Current (A)	Typical Speed (mm/s)	
	Push	Pull	Force (N)	No Load	With Load	No Load

Motor Speed (2600RPM, Duty Cycle 10\%)

C	5000	4000	5000	0.8	3.5	8.0	4.1
D	6000	4000	6000	0.8	3.5	6.0	3.1
F	2500	2500	2500	0.8	3.2	15.9	8.3
G	2000	2000	2000	0.8	2.8	21.4	12.1
H	1000	1000	1000	0.8	2.1	32.1	19.1
J	3500	3500	3500	0.8	3.6	11.9	6.0
K	8000	4000	8000	0.8	4.2	5.4	2.6

Motor Speed (3400RPM, Duty Cycle 10\%)

\mathbf{L}	6000	4000	6000	1.0	4.2	7.3	4.1
\mathbf{N}	2500	2500	2500	1.0	4.1	19.4	11.1
$\mathbf{0}$	2000	2000	2000	1.0	4.0	26.1	14.9
\mathbf{P}	1000	1000	1000	1.0	3.0	39.0	23.4
$\mathbf{0}$	3500	3500	3500	1.0	4.6	14.5	7.9
\mathbf{R}	8000	4000	8000	1.0	5.2	6.6	3.4
\mathbf{T}	5000	4000	5000	1.0	4.2	9.8	5.4

Motor Speed (3800RPM, Duty Cycle 10\%)

\mathbf{Y}	8000	4000	8000	1.2	5.5	7.7	4.3
\mathbf{U}	5000	4000	5000	1.2	4.7	11.3	6.6
\mathbf{W}	2500	2500	2500	1.2	4.6	23.0	13.4
\mathbf{Z}	3500	3500	3500	1.2	5.3	16.8	9.8

Note

1 Please refer to the approved drawing for the final authentic value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC. With a 36 V DC motor, the current is approximately two-thirds the current measured in 24 V DC. Speed will be similar for all the voltages.

4 The current \& speed in table are tested when the actuator is extending under push load.
5 The current \& speed in table and diagram are tested with TiMOTION control boxes, and there will be around 10% tolerance depending on different models of the control box. (Under no load condition, the voltage is around 32V DC. At rated load, the voltage output will be around 24 V DC)

6 Standard stroke: Min. $\geq 25 \mathrm{~mm}$, Max. please refer to below table.

CODE	Load (N)	Max Stroke (mm)
K, R,Y	≥ 8000	450
D, L	$=6000$	600
Others	<6000	1000

Performance Data (24V DC Motor)

Motor Speed (2600RPM, Duty Cycle 10\%)

Speed vs. Load

Current vs. Load

Performance Data (24V DC Motor)

Motor Speed (3400RPM, Duty Cycle 10\%)

Speed vs. Load

Current vs. Load

Performance Data (24V DC Motor)

Motor Speed (3800RPM, Duty Cycle 10\%)

Speed vs. Load

Current vs. Load

TA41

Voltage	$1=12 \mathrm{~V} \mathrm{DC}$	$2=24 \mathrm{~V} \mathrm{DC}$

Load and Speed See page 3

Stroke (mm)	See page 3	
Retracted Length (mm)	See page 8	
Rear Attachment (mm) See page 9	$\begin{aligned} & 2=\text { Aluminum casting, U clevis, slot } 6.2 \text {, depth } 17.0 \text {, hole } 10.2 \\ & 3=\text { Aluminum casting, U clevis, slot } 6.2 \text {, depth } 17.0 \text {, hole } 12.2 \\ & 4=\text { Aluminum casting, U clevis, slot } 8.2 \text { depth } 17.0 \text {, hole } 10.2 \\ & 5 \text { = Aluminum casting, U clevis, slot } 8.2 \text { depth } 17.0 \text {, hole } 12.2 \end{aligned}$	$\mathrm{C}=$ Aluminum casting, U clevis, slot 8.2, depth 17.0, hole 10.2, T-bush $\mathrm{F}=$ Aluminum CNC, no slot, hole 10.2, T-bush
Front Attachment (mm) See page 9	$0=$ Without punched hole on inner tube, without slot, M22*2P inner threaded $1=$ Punched hole on inner tube + plastic cap, without slot, hole 10.2 , with plastic bushing $2=$ Punched hole on inner tube + plastic cap, without slot, hole 12.2 3 = Plastic, U clevis, slot 8.2, depth 20.2, hole 10.2, for load push < 4000N \& pull < 2500N 4 = Plastic, U clevis, slot 8.2, depth 20.2, hole 12.2, for load push <4000N \& pull < 2500N	$5=$ Punched hole on inner tube, without slot, hole 10.2, with plastic bushing 6 = Punched hole on inner tube, without slot, hole 12.2 7 = Aluminum casting, U clevis, slot 6.2 , depth 17.0, hole 10.2 $8=$ Aluminum casting, U clevis, slot 6.2 , depth 17.0, hole 12.2 9 = Aluminum casting, U clevis, slot 6.2 , depth 17.0, hole 10.2, with plastic T-bushing $\mathrm{J}=$ Aluminum casting, without slot, hole 10.2 , for dental chair
Direction of Rear Attachment (Counterclockwise)	$1=0^{\circ} \quad 3=90^{\circ}$	

See page 10

Color	$1=$ Black	$2=$ Pantone 428C
IP Rating	$1=$ Without	

Special Functions for Spindle SubAssembly	$\begin{aligned} & 0=\text { Without } \\ & 1=\text { Safety nut } \end{aligned}$	2 = Standard push only 3 = Standard push only + safety nut
Functions for Limit Switches See page 10	1 = Two switches at full retracted / extended positions to cut current $2=$ Two switches at full retracted / extended positions to cut current + third one in between to send signal $3=$ Two switches at full retracted / extended positions to send signal	4 = Two switches at full retracted / extended positions to send signal + third one in between to send signal $5=$ Two switches at full retracted / extended positions to send signal
Output Signals	$0=$ Without $2=$ Hall sensor *2	3 = Reed Sensor
Connector See page 11	$\begin{aligned} & 1=\text { DIN } 6 P, 90^{\circ} \text { plug } \\ & 2=\text { Tinned leads } \\ & 4=\text { Big } 01 P, \text { plug } \\ & C=Y \text { cable (for direct cut system, no water proof, anti } \\ & \quad \text { pull) } \\ & E=\text { Molex } 8 P \text {, plug } \end{aligned}$	$\begin{aligned} & F=\text { DIN } 6 P, 180^{\circ} \text { plug } \\ & M=\text { DIN } 4 P, \text { dental chair plug (40510-143, standard) } \\ & N=\text { DIN } 4 P \text {, dental chair plug (40510-040) } \\ & G=\text { Audio plug } \\ & P=\text { Molex } 8 P, 90^{\circ} \text { plug, without anti-clip } \end{aligned}$
Cable Length (mm)	$0=$ Straight, 100 $3=$ Straight, 1000 $1=$ Straight, 500 $4=$ Straight, 1250 $2=$ Straight, 750 $5=$ Straight, 1500	$6=$ Straight, 2000 B H H $=$ For direct cut $7=$ Curly, 200 system, See page 11 $8=$ Curly, 400
The Position of Motor Connection	1 = Top (close to front attachment)	$2=$ Bottom (close to rear attachment)

TA41 Ordering Key Appendix

Retracted Length (mm)

1. Calculate $A+B+C=Y$
2. Retracted length needs to \geq Stroke $+Y$

A.		
Front Attach.	Rear Attach.	
$\mathbf{0}$	F	$2,3,4,5$, C
$\mathbf{1 , 2 , 5 , 6}$	-163	-
$\mathbf{3 , 4}$	-	+171
$\mathbf{7 , 8 , 9}$	-	+192
\mathbf{J}	-	+183

Stroke (mm)	Load (N)		
	<6000	$=6000$	$=8000$
25~150	-	-	-
151~200	-	-	+5
201~250	-	+5	+10
251~300	-	+10	+15
301~350	+5	+15	+20
351~400	+10	+20	+25
401~450	+15	+25	+30
451~500	+20	+30	x
501~550	+25	+35	x
551~600	+30	+40	x
601~650	+35	x	x
651~700	+40	x	x
701~750	+45	x	x
751~800	+50	x	x
801~850	+55	x	x
851~900	+60	x	x
901~950	+65	x	x
951~1000	+70	x	x

C. Spindle Function		
$\mathbf{N}<\mathbf{6 0 0 0}$ (\mathbf{N})		
Front Attach.	0,1	2,3
$\mathbf{0}$	-	-
$\mathbf{1 , 2 , 5 , 6}$	-	+5
$\mathbf{3 , 4}$	-	-
$\mathbf{7 , 8 , 9}$	-	-
J	-	
C. Spindle Function		
$\mathbf{N} \geq \mathbf{6 0 0 0}$ (N)		2,3
Front Attach.	0,1	+8
$\mathbf{1 , 2 , 5 , 6}$	-	-
$\mathbf{3 , 4}$	-	+3
$\mathbf{7 , 8 , 9}$	-	+8
J	-	

C. Spindle Function
$\mathrm{N}<\mathbf{6 0 0 0}$ (N)
Front Attach. 0,1 2,3
0
1, 2,5,6 - +5
3, 4
7,8,9
J
C. Spindle Function
$\mathrm{N} \geq 6000$ (N)
Front Attach. 0,1 2,3
$1,2,5,6-\quad+8$
3, 4

J - +8

TA41 Ordering Key Appendix

Rear Attachment (mm)

2 = Aluminum casting, U clevis, slot 6.2, depth 17.0, hole 10.2

$\mathrm{C}=$ Aluminum casting, U clevis, slot 8.2, depth 17.0, hole 10.2, T-bush

3 = Aluminum casting, U clevis, slot 6.2, depth 17.0, hole 12.2

$\mathrm{F}=$ Aluminum CNC, no slot, hole 10.2, T-bush

Front Attachment (mm)

$0=$ Without punched hole on inner tube, without slot, M22*2P inner threaded

4 = Plastic, U clevis, slot 8.2, depth 20.2, hole 12.2, for load push < 4000N \& pull <2500N

$1=$ Punched hole on inner tube + plastic cap, without slot, hole 10.2, with plastic bushing

$5=$ Punched hole on inner tube, without slot, hole 10.2, with plastic bushing

2 = Punched hole on inner tube + plastic cap, without slot, hole 12.2

$\varnothing 12.2$

$6=$ Punched hole on inner tube, without slot, hole 12.2

3 = Plastic, U clevis, slot 8.2, depth 20.2, hole 10.2, for load push <4000N \& pull $<2500 \mathrm{~N}$

7 = Aluminum casting, U clevis, slot 6.2, depth 17.0 , hole 10.2

TA41 Ordering Key Appendix

Front Attachment (mm)

$8=$ Aluminum casting, U clevis, slot 6.2 , depth 17.0, hole 12.2

9 = Aluminum casting, U clevis, slot 6.2, depth 17.0, hole 10.2, with plastic T-bushing

$J=$ Aluminum casting, without slot, hole 10.2, for dental chair

Direction of Rear Attachment (Counterclockwise)
$1=0^{\circ}$
$3=90^{\circ}$

Functions for Limit Switches

Wire Definitions

CODE	Pin					
	1 (Green)	2 (Red)	\bigcirc (White)	4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch
5	extend (VDC+)	N/A	upper limit switch	common	retract (VDC+)	lower limit switch

TA41 Ordering Key Appendix

Connector

Cable Length for Direct Cut System (mm)

CODE	L1	L2	L3
B	100	100	100
C	100	1000	400
D	100	2700	500
E	1000	100	100
F	100	600	1000
G	1500	1000	1000
H	100	100	1200

$E=$ Molex 8P, plug

$G=$ Audio plug

$F=\operatorname{DIN} 6 P, 180^{\circ}$ plug

$P=$ Molex $8 \mathrm{P}, 90^{\circ}$ plug, without anti-clip

$M=\operatorname{DIN} 4 P$, dental chair plug (40510-143, standard)

4P, dental chair plug (40510-040)

